ﻻ يوجد ملخص باللغة العربية
We study an equation structured by age and a phenotypic trait describing the growth process of a population subject to aging, competition between individuals, and mutations. This leads to a renewal equation which occurs in many evolutionary biology problems. We aim to describe precisely the asymp-totic behavior of the solution, to infer properties that illustrate the concentration and adaptive dynamics of such a population. This work is a continuation of [38] where the case without mutations is considered. When mutations are taken into account, it is necessary to control the corrector which is the main novelty of the present paper. Our approach consists in defining, by the Hopf transform, a Hamilton-Jacobi equation with an effective Hamiltonian as in homogenization problems. Its solution carries the singular part of the limiting density (typically Dirac masses) and the corrector defines the weights. The main new result of this paper is to prove that the corrector is uniformly bounded, using only the global Lipschitz and semi-convexity estimates for the viscosity solution of the Hamilton-Jacobi equation. We also establish the limiting equation satisfied by the corrector. To the best of our knowledge, this is the first example where such bounds can be proved in such a context.
We study a mathematical model describing the growth process of a population structured by age and a phenotypical trait, subject to aging, competition between individuals and rare mutations. Our goals are to describe the asymptotic behaviour of the so
We study the mathematical properties of a general model of cell division structured with several internal variables. We begin with a simpler and specific model with two variables, we solve the eigenvalue problem with strong or weak assumptions, and d
Continuous-time random walks are generalisations of random walks frequently used to account for the consistent observations that many molecules in living cells undergo anomalous diffusion, i.e. subdiffusion. Here, we describe the subdiffusive continu
We introduce and analyze several aspects of a new model for cell differentiation. It assumes that differentiation of progenitor cells is a continuous process. From the mathematical point of view, it is based on partial differential equations of trans
A tumor can be thought of as an ecosystem, which critically means that we cannot just consider it as a collection of mutated cells but more as a complex system of many interacting cellular and microenvironmental elements. At its simplest, a growing t