ﻻ يوجد ملخص باللغة العربية
A tumor can be thought of as an ecosystem, which critically means that we cannot just consider it as a collection of mutated cells but more as a complex system of many interacting cellular and microenvironmental elements. At its simplest, a growing tumor with increased proliferation capacity must compete for space as a limited resource. Hypercellularity leads to a contact-inhibited core with a competitive proliferating rim. Evolution and selection occurs, and an individual cells capacity to survive and propagate is determined by its combination of traits and interaction with the environment. With heterogeneity in phenotypes, the clone that will dominate is not always obvious as there are both local interactions and global pressures. Several combinations of phenotypes can coexist, changing the fitness of the whole. To understand some aspects of heterogeneity in a growing tumor we build an off-lattice agent based model consisting of individual cells with assigned trait values for proliferation and migration rates. We represent heterogeneity in these traits with frequency distributions and combinations of traits with density maps. How the distributions change over time is dependent on how traits are passed on to progeny cells, which is our main inquiry. We bypass the translation of genetics to behavior by focussing on the functional end result of inheritance of the phenotype combined with the environmental influence of limited space.
The unwelcome evolution of malignancy during cancer progression emerges through a selection process in a complex heterogeneous population structure. In the present work, we investigate evolutionary dynamics in a phenotypically heterogeneous populatio
We present a mathematical study of the emergence of phenotypic heterogeneity in vascularised tumours. Our study is based on formal asymptotic analysis and numerical simulations of a system of non-local parabolic equations that describes the phenotypi
Species richness varies widely across the tree of life, and there is great interest in identifying ecological, geographic, and other factors that affect rates of species proliferation. Recent methods for explicitly modeling the relationships among ch
We discuss two different ways of chromosomes and genomes evolution. Purifying selection dominates in large panmictic populations, where Mendelian law of independent gene assortment is valid. If the populations are small, recombination processes are n
Genetic studies of human traits have revolutionized our understanding of the variation between individuals, and opened the door for numerous breakthroughs in biology, medicine and other scientific fields. And yet, the ultimate promise of this area of