ﻻ يوجد ملخص باللغة العربية
The first-fit coloring is a heuristic that assigns to each vertex, arriving in a specified order $sigma$, the smallest available color. The problem Grundy Coloring asks how many colors are needed for the most adversarial vertex ordering $sigma$, i.e., the maximum number of colors that the first-fit coloring requires over all possible vertex orderings. Since its inception by Grundy in 1939, Grundy Coloring has been examined for its structural and algorithmic aspects. A brute-force $f(k)n^{2^{k-1}}$-time algorithm for Grundy Coloring on general graphs is not difficult to obtain, where $k$ is the number of colors required by the most adversarial vertex ordering. It was asked several times whether the dependency on $k$ in the exponent of $n$ can be avoided or reduced, and its answer seemed elusive until now. We prove that Grundy Coloring is W[1]-hard and the brute-force algorithm is essentially optimal under the Exponential Time Hypothesis, thus settling this question by the negative. The key ingredient in our W[1]-hardness proof is to use so-called half-graphs as a building block to transmit a color from one vertex to another. Leveraging the half-graphs, we also prove that b-Chromatic Core is W[1]-hard, whose parameterized complexity was posed as an open question by Panolan et al. [JCSS 17]. A natural follow-up question is, how the parameterized complexity changes in the absence of (large) half-graphs. We establish fixed-parameter tractability on $K_{t,t}$-free graphs for b-Chromatic Core and Partial Grundy Coloring, making a step toward answering this question. The key combinatorial lemma underlying the tractability result might be of independent interest.
It is an open problem whether the 3-coloring problem can be solved in polynomial time in the class of graphs that do not contain an induced path on $t$ vertices, for fixed $t$. We propose an algorithm that, given a 3-colorable graph without an induce
Temporal graphs (in which edges are active at specified times) are of particular relevance for spreading processes on graphs, e.g.~the spread of disease or dissemination of information. Motivated by real-world applications, modification of static gra
A rainbow $q$-coloring of a $k$-uniform hypergraph is a $q$-coloring of the vertex set such that every hyperedge contains all $q$ colors. We prove that given a rainbow $(k - 2lfloor sqrt{k}rfloor)$-colorable $k$-uniform hypergraph, it is NP-hard to
We show that recent innovations in deep reinforcement learning can effectively color very large graphs -- a well-known NP-hard problem with clear commercial applications. Because the Monte Carlo Tree Search with Upper Confidence Bound algorithm used
We reprove the results on the hardness of approximating hypergraph coloring using a different technique based on bounds on the size of extremal $t$-agreeing families of $[q]^n$. Specifically, using theorems of Frankl-Tokushige [FT99], Ahlswede-Khacha