ترغب بنشر مسار تعليمي؟ اضغط هنا

Obtaining higher-order Galerkin accuracy when the boundary is polygonally approximated

58   0   0.0 ( 0 )
 نشر من قبل Johnny Guzman
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study two techniques for correcting the geometrical error associated with domain approximation by a polygon. The first was introduced some time ago cite{bramble1972projection} and leads to a nonsymmetric formulation for Poissons equation. We introduce a new technique that yields a symmetric formulation and has similar performance. We compare both methods on a simple test problem.



قيم البحث

اقرأ أيضاً

We propose and study numerically the implicit approximation in time of the Navier-Stokes equations by a Galerkin-collocation method in time combined with inf-sup stable finite element methods in space. The conceptual basis of the Galerkin-collocation approach is the establishment of a direct connection between the Galerkin method and the classical collocation methods, with the perspective of achieving the accuracy of the former with reduced computational costs in terms of less complex algebraic systems of the latter. Regularity of higher order in time of the discrete solution is ensured further. As an additional ingredient, we employ Nitsches method to impose all boundary conditions in weak form with the perspective that evolving domains become feasible in the future. We carefully compare the performance poroperties of the Galerkin-collocation approach with a standard continuous Galerkin-Petrov method using piecewise linear polynomials in time, that is algebraically equivalent to the popular Crank-Nicholson scheme. The condition number of the arising linear systems after Newton linearization as well as the reliable approximation of the drag and lift coefficient for laminar flow around a cylinder (DFG flow benchmark with $Re=100$) are investigated. The superiority of the Galerkin-collocation approach over the linear in time, continuous Galerkin-Petrov method is demonstrated therein.
147 - Limin Ma 2020
In this paper, we present a unified analysis of the superconvergence property for a large class of mixed discontinuous Galerkin methods. This analysis applies to both the Poisson equation and linear elasticity problems with symmetric stress formulati ons. Based on this result, some locally postprocess schemes are employed to improve the accuracy of displacement by order min(k+1, 2) if polynomials of degree k are employed for displacement. Some numerical experiments are carried out to validate the theoretical results.
We design and analyze a coupling of a discontinuous Galerkin finite element method with a boundary element method to solve the Helmholtz equation with variable coefficients in three dimensions. The coupling is realized with a mortar variable that is related to an impedance trace on a smooth interface. The method obtained has a block structure with nonsingular subblocks. We prove quasi-optimality of the $h$- and $
Hermitian and unitary matrices are two representatives of the class of normal matrices whose full eigenvalue decomposition can be stably computed in quadratic computing com plexity. Recently, fast and reliable eigensolvers dealing with low rank pertu rbations of unitary and Hermitian matrices were proposed. These structured eigenvalue problems appear naturally when computing roots, via confederate linearizations, of polynomials expressed in, e.g., the monomial or Chebyshev basis. Often, however, it is not known beforehand whether or not a matrix can be written as the sum of an Hermitian or unitary matrix plus a low rank perturbation. We propose necessary and sufficient conditions characterizing the class of Hermitian or unitary plus low rank matrices. The number of singular values deviating from 1 determines the rank of a perturbation to bring a matrix to unitary form. A similar condition holds for Hermitian matrices; the eigenvalues of the skew-Hermitian part differing from 0 dictate the rank of the perturbation. We prove that these relations are linked via the Cayley transform. Based on these conditions we are able to identify the closest Hermitian and unitary plus low rank matrix in Frobenius and spectral norm and a practical Lanczos iteration to detect the low rank perturbation is presented. Numerical tests prove that this straightforward algorithm is robust with respect to noise.
Many problems in fluid dynamics are effectively modeled as Stokes flows - slow, viscous flows where the Reynolds number is small. Boundary integral equations are often used to solve these problems, where the fundamental solutions for the fluid veloci ty are the Stokeslet and stresslet. One of the main challenges in evaluating the boundary integrals is that the kernels become singular on the surface. A regularization method that eliminates the singularities and reduces the numerical error through correction terms for both the Stokeslet and stresslet integrals was developed in Tlupova and Beale, JCP (2019). In this work we build on the previously developed method to introduce a new stresslet regularization that is simpler and results in higher accuracy when evaluated on the surface. Our regularization replaces a seventh-degree polynomial that results from an equation with two conditions and two unknowns with a fifth-degree polynomial that results from an equation with one condition and one unknown. Numerical experiments demonstrate that the new regularization retains the same order of convergence as the regularization developed by Tlupova and Beale but shows a decreased magnitude of the error.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا