ﻻ يوجد ملخص باللغة العربية
Hermitian and unitary matrices are two representatives of the class of normal matrices whose full eigenvalue decomposition can be stably computed in quadratic computing com plexity. Recently, fast and reliable eigensolvers dealing with low rank perturbations of unitary and Hermitian matrices were proposed. These structured eigenvalue problems appear naturally when computing roots, via confederate linearizations, of polynomials expressed in, e.g., the monomial or Chebyshev basis. Often, however, it is not known beforehand whether or not a matrix can be written as the sum of an Hermitian or unitary matrix plus a low rank perturbation. We propose necessary and sufficient conditions characterizing the class of Hermitian or unitary plus low rank matrices. The number of singular values deviating from 1 determines the rank of a perturbation to bring a matrix to unitary form. A similar condition holds for Hermitian matrices; the eigenvalues of the skew-Hermitian part differing from 0 dictate the rank of the perturbation. We prove that these relations are linked via the Cayley transform. Based on these conditions we are able to identify the closest Hermitian and unitary plus low rank matrix in Frobenius and spectral norm and a practical Lanczos iteration to detect the low rank perturbation is presented. Numerical tests prove that this straightforward algorithm is robust with respect to noise.
Some fast algorithms for computing the eigenvalues of a block companion matrix $A = U + XY^H$, where $Uin mathbb C^{ntimes n}$ is unitary block circulant and $X, Y inmathbb{C}^{n times k}$, have recently appeared in the literature. Most of these algo
We present fast numerical methods for computing the Hessenberg reduction of a unitary plus low-rank matrix $A=G+U V^H$, where $Gin mathbb C^{ntimes n}$ is a unitary matrix represented in some compressed format using $O(nk)$ parameters and $U$ and $V$
Expressing a matrix as the sum of a low-rank matrix plus a sparse matrix is a flexible model capturing global and local features in data. This model is the foundation of robust principle component analysis (Candes et al., 2011) (Chandrasekaran et al.
This paper considers the completion problem for a tensor (also referred to as a multidimensional array) from limited sampling. Our greedy method is based on extending the low-rank approximation pursuit (LRAP) method for matrix completions to tensor c
We consider adaptive approximations of the parameter-to-solution map for elliptic operator equations depending on a large or infinite number of parameters, comparing approximation strategies of different degrees of nonlinearity: sparse polynomial exp