ﻻ يوجد ملخص باللغة العربية
Since the invention of chirped pulse amplification, which was recognized by a Nobel prize in physics in 2018, there has been a continuing increase in available laser intensity. Combined with advances in our understanding of the kinetics of relativistic plasma, studies of laser-plasma interactions are entering a new regime where the physics of relativistic plasmas is strongly affected by strong-field quantum electrodynamics (QED) processes, including hard photon emission and electron-positron ($e^+$-$e^-$) pair production. This coupling of quantum emission processes and relativistic collective particle dynamics can result in dramatically new plasma physics phenomena, such as the generation of dense $e^+$-$e^-$ pair plasma from near vacuum, complete laser energy absorption by QED processes or the stopping of an ultrarelativistic electron beam, which could penetrate a cm of lead, by a hairs breadth of laser light. In addition to being of fundamental interest, it is crucial to study this new regime to understand the next generation of ultra-high intensity laser-matter experiments and their resulting applications, such as high energy ion, electron, positron, and photon sources for fundamental physics studies, medical radiotherapy, and next generation radiography for homeland security and industry.
Ultra-intense lasers are expected to produce, in near future, relativistic electron-positron plasma droplets. Considering the local photon production rate in complete leading order in quantum electrodynamics (QED), we point out that these droplets are interesting sources of gamma ray flashes
The expansion dynamics of hot electron-positron-photon plasma droplets is dealt with within relativistic hydrodynamics. Such droplets, envisaged to be created in future experiments by irradiating thin foils with counter-propagating ultra-intense lase
Recent discoveries have demonstrated that matter can be distinguished on the basis of topological considerations, giving rise to the concept of topological phase. Introduced originally in condensed matter physics, the physics of topological phase can
These lecture notes were presented by Allan N. Kaufman in his graduate plasma theory course and a follow-on special topics course (Physics 242A, B, C and Physics 250 at the University of California Berkeley). The notes follow the order of the lecture
The phenomenon of Bose-Einstein condensation is traditionally associated with and experimentally verified for low temperatures: either of nano-Kelvin scale for alkali atoms [1-3] or room temperatures for quasi-particles [4,5] or photons in two dimens