ﻻ يوجد ملخص باللغة العربية
The expansion dynamics of hot electron-positron-photon plasma droplets is dealt with within relativistic hydrodynamics. Such droplets, envisaged to be created in future experiments by irradiating thin foils with counter-propagating ultra-intense laser beams, are sources of flashes of gamma radiation. Warm electron-positron plasma droplets may be identified and characterized by a broadened 511 keV line.
Ultra-intense lasers are expected to produce, in near future, relativistic electron-positron plasma droplets. Considering the local photon production rate in complete leading order in quantum electrodynamics (QED), we point out that these droplets are interesting sources of gamma ray flashes
Deep understanding of photon polarization impact on pair production is essential for the efficient creation of laser driven polarized positron beams, and demands a complete description of polarization effects in strong-field QED processes. We investi
We describe a laser-plasma platform for photon-photon collision experiments to measure fundamental quantum electrodynamic processes such as the linear Breit-Wheeler process with real photons. The platform has been developed using the Gemini laser fac
For understanding carbon erosion and redeposition in nuclear fusion devices, it is important to understand the transport and chemical break-up of hydrocarbon molecules in edge plasmas, often diagnosed by emission of the CH A^2Delta - X^2Pi Gero band
Plasma-based accelerators sustain accelerating gradients which are several orders greater than obtained in conventional accelerators. Focusing of electron and positron beams by wakefield, excited in plasma, in electron-positron collider is very impor