ترغب بنشر مسار تعليمي؟ اضغط هنا

A New Framework for Query Efficient Active Imitation Learning

93   0   0.0 ( 0 )
 نشر من قبل Daniel Hsu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Daniel Hsu




اسأل ChatGPT حول البحث

We seek to align agent policy with human expert behavior in a reinforcement learning (RL) setting, without any prior knowledge about dynamics, reward function, and unsafe states. There is a human expert knowing the rewards and unsafe states based on his preference and objective, but querying that human expert is expensive. To address this challenge, we propose a new framework for imitation learning (IL) algorithm that actively and interactively learns a model of the users reward function with efficient queries. We build an adversarial generative model of states and a successor feature (SR) model trained over transition experience collected by learning policy. Our method uses these models to select state-action pairs, asking the user to comment on the optimality or safety, and trains a adversarial neural network to predict the rewards. Different from previous papers, which are almost all based on uncertainty sampling, the key idea is to actively and efficiently select state-action pairs from both on-policy and off-policy experience, by discriminating the queried (expert) and unqueried (generated) data and maximizing the efficiency of value function learning. We call this method adversarial reward query with successor representation. We evaluate the proposed method with simulated human on a state-based 2D navigation task, robotic control tasks and the image-based video games, which have high-dimensional observation and complex state dynamics. The results show that the proposed method significantly outperforms uncertainty-based methods on learning reward models, achieving better query efficiency, where the adversarial discriminator can make the agent learn human behavior more efficiently and the SR can select states which have stronger impact on value function. Moreover, the proposed method can also learn to avoid unsafe states when training the reward model.



قيم البحث

اقرأ أيضاً

Multiple query criteria active learning (MQCAL) methods have a higher potential performance than conventional active learning methods in which only one criterion is deployed for sample selection. A central issue related to MQCAL methods concerns the development of an integration criteria strategy (ICS) that makes full use of all criteria. The conventional ICS adopted in relevant research all facilitate the desired effects, but several limitations still must be addressed. For instance, some of the strategies are not sufficiently scalable during the design process, and the number and type of criteria involved are dictated. Thus, it is challenging for the user to integrate other criteria into the original process unless modifications are made to the algorithm. Other strategies are too dependent on empirical parameters, which can only be acquired by experience or cross-validation and thus lack generality; additionally, these strategies are counter to the intention of active learning, as samples need to be labeled in the validation set before the active learning process can begin. To address these limitations, we propose a novel MQCAL method for classification tasks that employs a third strategy via weighted rank aggregation. The proposed method serves as a heuristic means to select high-value samples of high scalability and generality and is implemented through a three-step process: (1) the transformation of the sample selection to sample ranking and scoring, (2) the computation of the self-adaptive weights of each criterion, and (3) the weighted aggregation of each sample rank list. Ultimately, the sample at the top of the aggregated ranking list is the most comprehensively valuable and must be labeled. Several experiments generating 257 wins, 194 ties and 49 losses against other state-of-the-art MQCALs are conducted to verify that the proposed method can achieve superior results.
Robust Policy Search is the problem of learning policies that do not degrade in performance when subject to unseen environment model parameters. It is particularly relevant for transferring policies learned in a simulation environment to the real wor ld. Several existing approaches involve sampling large batches of trajectories which reflect the differences in various possible environments, and then selecting some subset of these to learn robust policies, such as the ones that result in the worst performance. We propose an active learning based framework, EffAcTS, to selectively choose model parameters for this purpose so as to collect only as much data as necessary to select such a subset. We apply this framework to an existing method, namely EPOpt, and experimentally validate the gains in sample efficiency and the performance of our approach on standard continuous control tasks. We also present a Multi-Task Learning perspective to the problem of Robust Policy Search, and draw connections from our proposed framework to existing work on Multi-Task Learning.
In recent years, a myriad of advanced results have been reported in the community of imitation learning, ranging from parametric to non-parametric, probabilistic to non-probabilistic and Bayesian to frequentist approaches. Meanwhile, ample applicatio ns (e.g., grasping tasks and human-robot collaborations) further show the applicability of imitation learning in a wide range of domains. While numerous literature is dedicated to the learning of human skills in unconstrained environment, the problem of learning constrained motor skills, however, has not received equal attention yet. In fact, constrained skills exist widely in robotic systems. For instance, when a robot is demanded to write letters on a board, its end-effector trajectory must comply with the plane constraint from the board. In this paper, we aim to tackle the problem of imitation learning with linear constraints. Specifically, we propose to exploit the probabilistic properties of multiple demonstrations, and subsequently incorporate them into a linearly constrained optimization problem, which finally leads to a non-parametric solution. In addition, a connection between our framework and the classical model predictive control is provided. Several examples including simulated writing and locomotion tasks are presented to show the effectiveness of our framework.
117 - Yang Liu , Yan Kang , Xinwei Zhang 2019
We introduce a collaborative learning framework allowing multiple parties having different sets of attributes about the same user to jointly build models without exposing their raw data or model parameters. In particular, we propose a Federated Stoch astic Block Coordinate Descent (FedBCD) algorithm, in which each party conducts multiple local updates before each communication to effectively reduce the number of communication rounds among parties, a principal bottleneck for collaborative learning problems. We analyze theoretically the impact of the number of local updates and show that when the batch size, sample size, and the local iterations are selected appropriately, within $T$ iterations, the algorithm performs $mathcal{O}(sqrt{T})$ communication rounds and achieves some $mathcal{O}(1/sqrt{T})$ accuracy (measured by the average of the gradient norm squared). The approach is supported by our empirical evaluations on a variety of tasks and datasets, demonstrating advantages over stochastic gradient descent (SGD) approaches.
This paper proposes Self-Imitation Learning (SIL), a simple off-policy actor-critic algorithm that learns to reproduce the agents past good decisions. This algorithm is designed to verify our hypothesis that exploiting past good experiences can indir ectly drive deep exploration. Our empirical results show that SIL significantly improves advantage actor-critic (A2C) on several hard exploration Atari games and is competitive to the state-of-the-art count-based exploration methods. We also show that SIL improves proximal policy optimization (PPO) on MuJoCo tasks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا