ترغب بنشر مسار تعليمي؟ اضغط هنا

A novel active learning framework for classification: using weighted rank aggregation to achieve multiple query criteria

65   0   0.0 ( 0 )
 نشر من قبل Yu Zhao
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Multiple query criteria active learning (MQCAL) methods have a higher potential performance than conventional active learning methods in which only one criterion is deployed for sample selection. A central issue related to MQCAL methods concerns the development of an integration criteria strategy (ICS) that makes full use of all criteria. The conventional ICS adopted in relevant research all facilitate the desired effects, but several limitations still must be addressed. For instance, some of the strategies are not sufficiently scalable during the design process, and the number and type of criteria involved are dictated. Thus, it is challenging for the user to integrate other criteria into the original process unless modifications are made to the algorithm. Other strategies are too dependent on empirical parameters, which can only be acquired by experience or cross-validation and thus lack generality; additionally, these strategies are counter to the intention of active learning, as samples need to be labeled in the validation set before the active learning process can begin. To address these limitations, we propose a novel MQCAL method for classification tasks that employs a third strategy via weighted rank aggregation. The proposed method serves as a heuristic means to select high-value samples of high scalability and generality and is implemented through a three-step process: (1) the transformation of the sample selection to sample ranking and scoring, (2) the computation of the self-adaptive weights of each criterion, and (3) the weighted aggregation of each sample rank list. Ultimately, the sample at the top of the aggregated ranking list is the most comprehensively valuable and must be labeled. Several experiments generating 257 wins, 194 ties and 49 losses against other state-of-the-art MQCALs are conducted to verify that the proposed method can achieve superior results.



قيم البحث

اقرأ أيضاً

92 - Daniel Hsu 2019
We seek to align agent policy with human expert behavior in a reinforcement learning (RL) setting, without any prior knowledge about dynamics, reward function, and unsafe states. There is a human expert knowing the rewards and unsafe states based on his preference and objective, but querying that human expert is expensive. To address this challenge, we propose a new framework for imitation learning (IL) algorithm that actively and interactively learns a model of the users reward function with efficient queries. We build an adversarial generative model of states and a successor feature (SR) model trained over transition experience collected by learning policy. Our method uses these models to select state-action pairs, asking the user to comment on the optimality or safety, and trains a adversarial neural network to predict the rewards. Different from previous papers, which are almost all based on uncertainty sampling, the key idea is to actively and efficiently select state-action pairs from both on-policy and off-policy experience, by discriminating the queried (expert) and unqueried (generated) data and maximizing the efficiency of value function learning. We call this method adversarial reward query with successor representation. We evaluate the proposed method with simulated human on a state-based 2D navigation task, robotic control tasks and the image-based video games, which have high-dimensional observation and complex state dynamics. The results show that the proposed method significantly outperforms uncertainty-based methods on learning reward models, achieving better query efficiency, where the adversarial discriminator can make the agent learn human behavior more efficiently and the SR can select states which have stronger impact on value function. Moreover, the proposed method can also learn to avoid unsafe states when training the reward model.
Ensemble models in E-commerce combine predictions from multiple sub-models for ranking and revenue improvement. Industrial ensemble models are typically deep neural networks, following the supervised learning paradigm to infer conversion rate given i nputs from sub-models. However, this process has the following two problems. Firstly, the point-wise scoring approach disregards the relationships between items and leads to homogeneous displayed results, while diversified display benefits user experience and revenue. Secondly, the learning paradigm focuses on the ranking metrics and does not directly optimize the revenue. In our work, we propose a new Learning-To-Ensemble (LTE) framework RAEGO, which replaces the ensemble model with a contextual Rank Aggregator (RA) and explores the best weights of sub-models by the Evaluator-Generator Optimization (EGO). To achieve the best online performance, we propose a new rank aggregation algorithm TournamentGreedy as a refinement of classic rank aggregators, which also produces the best average weighted Kendall Tau Distance (KTD) amongst all the considered algorithms with quadratic time complexity. Under the assumption that the best output list should be Pareto Optimal on the KTD metric for sub-models, we show that our RA algorithm has higher efficiency and coverage in exploring the optimal weights. Combined with the idea of Bayesian Optimization and gradient descent, we solve the online contextual Black-Box Optimization task that finds the optimal weights for sub-models given a chosen RA model. RA-EGO has been deployed in our online system and has improved the revenue significantly.
281 - Abhishek Kumar 2012
With the advent of kernel methods, automating the task of specifying a suitable kernel has become increasingly important. In this context, the Multiple Kernel Learning (MKL) problem of finding a combination of pre-specified base kernels that is suita ble for the task at hand has received significant attention from researchers. In this paper we show that Multiple Kernel Learning can be framed as a standard binary classification problem with additional constraints that ensure the positive definiteness of the learned kernel. Framing MKL in this way has the distinct advantage that it makes it easy to leverage the extensive research in binary classification to develop better performing and more scalable MKL algorithms that are conceptually simpler, and, arguably, more accessible to practitioners. Experiments on nine data sets from different domains show that, despite its simplicity, the proposed technique compares favorably with current leading MKL approaches.
251 - Sungsu Lim , Ajin Joseph , Lei Le 2018
Q-learning can be difficult to use in continuous action spaces, because an optimization has to be solved to find the maximal action for the action-values. A common strategy has been to restrict the functional form of the action-values to be concave i n the actions, to simplify the optimization. Such restrictions, however, can prevent learning accurate action-values. In this work, we propose a new policy search objective that facilitates using Q-learning and a framework to optimize this objective, called Actor-Expert. The Expert uses Q-learning to update the action-values towards optimal action-values. The Actor learns the maximal actions over time for these changing action-values. We develop a Cross Entropy Method (CEM) for the Actor, where such a global optimization approach facilitates use of generically parameterized action-values. This method - which we call Conditional CEM - iteratively concentrates density around maximal actions, conditioned on state. We prove that this algorithm tracks the expected CEM update, over states with changing action-values. We demonstrate in a toy environment that previous methods that restrict the action-value parameterization fail whereas Actor-Expert with a more general action-value parameterization succeeds. Finally, we demonstrate that Actor-Expert performs as well as or better than competitors on four benchmark continuous-action environments.
Active learning aims to achieve greater accuracy with less training data by selecting the most useful data samples from which it learns. Single-criterion based methods (i.e., informativeness and representativeness based methods) are simple and effici ent; however, they lack adaptability to different real-world scenarios. In this paper, we introduce a multiple-criteria based active learning algorithm, which incorporates three complementary criteria, i.e., informativeness, representativeness and diversity, to make appropriate selections in the active learning rounds under different data types. We consider the selection process as a Determinantal Point Process, which good balance among these criteria. We refine the query selection strategy by both selecting the hardest unlabeled data sample and biasing towards the classifiers that are more suitable for the current data distribution. In addition, we also consider the dependencies and relationships between these data points in data selection by means of centroidbased clustering approaches. Through evaluations on synthetic and real-world datasets, we show that our method performs significantly better and is more stable than other multiple-criteria based AL algorithms.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا