ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinetic Scale Spectral Features of Cross Helicity and Residual Energy in the Inner Heliosphere

178   0   0.0 ( 0 )
 نشر من قبل Daniel Vech
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this Paper, we present the first results from the Flux Angle operation mode of the Faraday Cup instrument onboard Parker Solar Probe. The Flux Angle mode allows rapid measurements of phase space density fluctuations close to the peak of the proton velocity distribution function with a cadence of 293 Hz. This approach provides an invaluable tool for understanding kinetic scale turbulence in the solar wind and solar corona. We describe a technique to convert the phase space density fluctuations into vector velocity components and compute several turbulence parameters such as spectral index, residual energy and cross helicity during two intervals the Flux Angle mode was used in Parker Solar Probes first encounter at 0.174 AU distance from the Sun.



قيم البحث

اقرأ أيضاً

We study spectral features of ion velocity and magnetic field correlations in the solar wind and in the magnetosheath using data from the Magnetospheric Multi-Scale (MMS) spacecraft. High resolution MMS observations enable the study of transition of these correlations between their magnetofluid character at larger scales into the sub-proton kinetic range, previously unstudied in spacecraft data. Cross-helicity, angular alignment and energy partitioning is examined over a suit- able range of scales, employing measurements based on the Taylor frozen-in approximation as well as direct two-spacecraft correlation measurements. The results demonstrate signatures of alignment at large scales. As kinetic scales are approached, the alignment between v and b is destroyed by demagnetization of protons.
The nature of the plasma wave modes around the ion kinetic scales in highly Alfvenic slow solar wind turbulence is investigated using data from the NASAs Parker Solar Probe taken in the inner heliosphere, at 0.18 Astronomical Unit (AU) from the sun. The joint distribution of the normalized reduced magnetic helicity ${sigma}_m ({theta}_{RB}, {tau})$ is obtained, where ${theta}_{RB}$ is the angle between the local mean magnetic field and the radial direction and ${tau}$ is the temporal scale. Two populations around ion scales are identified: the first population has ${sigma}_m ({theta}_{RB}, {tau}) < 0$ for frequencies (in the spacecraft frame) ranging from 2.1 to 26 Hz for $60^{circ} < {theta}_{RB} < 130^{circ}$, corresponding to kinetic Alfven waves (KAWs), and the second population has ${sigma}_m ({theta}_{RB}, {tau}) > 0$ in the frequency range [1.4, 4.9] Hz for ${theta}_{RB} > 150^{circ}$, corresponding to Alfven ion Cyclotron Waves (ACWs). This demonstrates for the first time the co-existence of KAWs and ACWs in the slow solar wind in the inner heliosphere, which contrasts with previous observations in the slow solar wind at 1 AU. This discrepancy between 0.18 and 1 AU could be explained, either by i) a dissipation of ACWs via cyclotron resonance during their outward journey, or by ii) the high Alfvenicity of the slow solar wind at 0.18 AU that may be favorable for the excitation of ACWs.
The solar wind proton temperature at 1-au has been found to be correlated with small-scale intermittent magnetic structures, i.e., regions with enhanced temperature are associated with coherent structures such as current sheets. Using Parker Solar Pr obe data from the first encounter, we study this association using measurements of radial proton temperature, employing the Partial Variance of Increments (PVI) technique to identify intermittent magnetic structures. We observe that the probability density functions of high-PVI events have higher median temperatures than those with lower PVI, The regions in space where PVI peaks were also locations that had enhanced temperatures when compared with similar regions suggesting a heating mechanism in the young solar wind that is associated with intermittency developed by a nonlinear turbulent cascade.n the immediate vicinity.
The recently released spacecraft potential measured by the RPW instrument on-board Solar Orbiter has been used to estimate the solar wind electron density in the inner heliosphere. Solar-wind electron density measured during June 2020 has been analys ed to obtain a thorough characterization of the turbulence and intermittency properties of the fluctuations. Magnetic field data have been used to describe the presence of ion-scale waves. Selected intervals have been extracted to study and quantify the properties of turbulence. The Empirical Mode Decomposition has been used to obtain the generalized marginal Hilbert spectrum, equivalent to the structure functions analysis, and additionally reducing issues typical of non-stationary, short time series. The presence of waves was quantitatively determined introducing a parameter describing the time-dependent, frequency-filtered wave power. A well defined inertial range with power-law scaling has been found almost everywhere. However, the Kolmogorov scaling and the typical intermittency effects are only present in part of the samples. Other intervals have shallower spectra and more irregular intermittency, not described by models of turbulence. These are observed predominantly during intervals of enhanced ion frequency wave activity. Comparisons with compressible magnetic field intermittency (from the MAG instrument) and with an estimate of the solar wind velocity (using electric and magnetic field) are also provided to give general context and help determine the cause for the anomalous fluctuations.
84 - M. Iovieno 2015
Plasma velocity and magnetic field measurements from the Voyager 2 mission are used to study solar wind turbulence in the slow solar wind at two different heliocentric distances, 5 and 29 astronomical units, sufficiently far apart to provide informat ion on the radial evolution of this turbulence. The magnetic helicity and the cross-helicity, which express the correlation between the plasma velocity and the magnetic field, are used to characterize the turbulence. Wave number spectra are computed by means of the Taylor hypothesis applied to time resolved single point Voyager 2 measurements. The overall picture we get is complex and difficult to interpret. A substantial decrease of the cross-helicity at smaller scales (over 1-3 hours of observation) with increasing heliocentric distance is observed. At 5 AU the only peak in the probability density of the normalized residual energy is negative, near -0.5. At 29 AU the probability density becomes doubly peaked, with a negative peak at -0.5 and a smaller peak at a positive values of about 0.7. A decrease of the cross-helicity for increasing heliocentric distance is observed, together with a reduction of the unbalance toward the magnetic energy of the energy of the fluctuations. For the smaller scales, we found that at 29 AU the normalized polarization is small and positive on average (about 0.1), it is instead zero at 5 AU. For the larger scales, the polarization is low and positive at 5 AU (average around 0.1) while it is negative (around - 0.15) at 29 AU.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا