ﻻ يوجد ملخص باللغة العربية
The recently released spacecraft potential measured by the RPW instrument on-board Solar Orbiter has been used to estimate the solar wind electron density in the inner heliosphere. Solar-wind electron density measured during June 2020 has been analysed to obtain a thorough characterization of the turbulence and intermittency properties of the fluctuations. Magnetic field data have been used to describe the presence of ion-scale waves. Selected intervals have been extracted to study and quantify the properties of turbulence. The Empirical Mode Decomposition has been used to obtain the generalized marginal Hilbert spectrum, equivalent to the structure functions analysis, and additionally reducing issues typical of non-stationary, short time series. The presence of waves was quantitatively determined introducing a parameter describing the time-dependent, frequency-filtered wave power. A well defined inertial range with power-law scaling has been found almost everywhere. However, the Kolmogorov scaling and the typical intermittency effects are only present in part of the samples. Other intervals have shallower spectra and more irregular intermittency, not described by models of turbulence. These are observed predominantly during intervals of enhanced ion frequency wave activity. Comparisons with compressible magnetic field intermittency (from the MAG instrument) and with an estimate of the solar wind velocity (using electric and magnetic field) are also provided to give general context and help determine the cause for the anomalous fluctuations.
The nature of the plasma wave modes around the ion kinetic scales in highly Alfvenic slow solar wind turbulence is investigated using data from the NASAs Parker Solar Probe taken in the inner heliosphere, at 0.18 Astronomical Unit (AU) from the sun.
The scaling of the turbulent spectra provides a key measurement that allows to discriminate between different theoretical predictions of turbulence. In the solar wind, this has driven a large number of studies dedicated to this issue using in-situ da
We use the plasma density based on measurements of the probe-to-spacecraft potential in combination with magnetic field measurements by MAG to study fields and density fluctuations in the solar wind observed by Solar Orbiter during the first periheli
We report proton temperature anisotropy variations in the inner heliosphere with Parker Solar Probe (PSP) observations. Using a linear fitting method, we derive proton temperature anisotropy with temperatures measured by the Solar Probe Cup (SPC) fro
The anisotropy of solar wind turbulence is a critical issue in understanding the physics of energy transfer between scales and energy conversion between fields and particles in the heliosphere. Using the measurement of emph{Parker Solar Probe} (emph{