ترغب بنشر مسار تعليمي؟ اضغط هنا

Infrared structure of $mathcal{N}$ = 4 SYM and leading transcendentality principle in gauge theory

66   0   0.0 ( 0 )
 نشر من قبل Amlan Chakraborty
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a detailed study on the infrared structure of $mathcal{N}=4$ SYM and its connection to QCD. Calculation of collinear splitting functions helps to understand the structure and thus one can get infrared safe cross sections. We also demonstrate the factorization property that soft plus virtual part of the cross section satisfies and through factorization, we calculate soft distribution function up to third order in perturbation theory. We show that the soft distribution function is process independent that includes operators as well as external legs. In addition to this we compare our findings against the known results in QCD through principle of maximum transcendentality (PMT). We extend our analysis further for the case of three-point form factors involving stress tensor and find that it violates the PMT while comparing with the corresponding quantity in the standard model, observed for the first time at the level of form factor.



قيم البحث

اقرأ أيضاً

We present numerical results for the nonplanar lightlike cusp and collinear anomalous dimension at four loops in ${mathcal N} = 4$ SYM theory, which we infer from a calculation of the Sudakov form factor. The latter is expressed as a rational linear combination of uniformly transcendental integrals for arbitrary colour factor. Numerical integration in the nonplanar sector reveals explicitly the breakdown of quadratic Casimir scaling at the four-loop order. A thorough analysis of the reported numerical uncertainties is carried out.
We study supersymmetric sectors at half-BPS boundaries and interfaces in the 4d $mathcal{N}=4$ super Yang-Mills with the gauge group $G$, which are described by associative algebras equipped with twisted traces. Such data are in one-to-one correspond ence with an infinite set of defect correlation functions. We identify algebras and traces for known boundary conditions. Ward identities expressing the (twisted) periodicity of the trace highly constrain its structure, in many cases allowing for the complete solution. Our main examples in this paper are: the universal enveloping algebra $U(mathfrak{g})$ with the trace describing the Dirichlet boundary conditions; and the finite W-algebra $mathcal{W}(mathfrak{g},t_+)$ with the trace describing the Nahm pole boundary conditions.
In this paper we develop a supersymmetric version of unitarity cut method for form factors of operators from the chiral truncation of the the $mathcal{N}=4$ stress-tensor current supermultiplet $T^{AB}$. The relation between the superform factor with supermomentum equals to zero and the logarithmic derivative of the superamplitude with respect to the coupling constant is discussed and verified at tree- and one-loop level for any MHV $n$-point ($n geq 4$) superform factor involving operators from chiral truncation of the stress-tensor energy supermultiplet. The explicit $mathcal{N}=4$ covariant expressions for n-point tree- and one-loop MHV form factors are obtained. As well, the ansatz for the two-loop three-point MHV superform factor is suggested in the planar limit, based on the reduction procedure for the scalar integrals suggested in our previous work. The different soft and collinear limits in the MHV sector at tree- and one-loop level are discussed.
An integrated correlator of four superconformal stress-tensor primaries of $mathcal{N}=4$ supersymmetric $SU(N)$ Yang-Mills theory (SYM), originally obtained by localisation, is re-expressed as a two-dimensional lattice sum that is manifestly invaria nt under $SL(2,mathbb{Z})$ S-duality. This expression is shown to satisfy a novel Laplace equation in the complex coupling constant $tau$ that relates the $SU(N)$ integrated correlator to those of the $SU(N+1)$ and $SU(N-1)$ theories. The lattice sum is shown to precisely reproduce known perturbative and non-perturbative properties of $mathcal{N}=4$ SYM for any finite $N$, as well as extending previously conjectured properties of the large-$N$ expansion.
In this paper we consider tree-level gauge invariant off-shell amplitudes (Wilson line form factors) in $mathcal{N}=4$ SYM. For the off-shell amplitudes with one leg off-shell we present a conjecture for their Grassmannian integral representation in spinor helicity, twistor and momentum twistor parameterizations. The presented conjecture is successfully checked against BCFW results for MHV$_n$, NMHV$_4$ and NMHV$_5$ off-shell amplitudes. We have also verified that our Grassmannian integral representation correctly reproduces soft (on-shell) limit for the off-shell gluon momentum. It is shown that the (deformed) off-shell amplitude expressions could be also obtained using quantum inverse scattering method for auxiliary $gl(4|4)$ super spin chain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا