ترغب بنشر مسار تعليمي؟ اضغط هنا

Grover Adaptive Search for Constrained Polynomial Binary Optimization

59   0   0.0 ( 0 )
 نشر من قبل Austin Gilliam
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we discuss Grover Adaptive Search (GAS) for Constrained Polynomial Binary Optimization (CPBO) problems, and in particular, Quadratic Unconstrained Binary Optimization (QUBO) problems, as a special case. GAS can provide a quadratic speed-up for combinatorial optimization problems compared to brute force search. However, this requires the development of efficient oracles to represent problems and flag states that satisfy certain search criteria. In general, this can be achieved using quantum arithmetic, however, this is expensive in terms of Toffoli gates as well as required ancilla qubits, which can be prohibitive in the near-term. Within this work, we develop a way to construct efficient oracles to solve CPBO problems using GAS algorithms. We demonstrate this approach and the potential speed-up for the portfolio optimization problem, i.e. a QUBO, using simulation and experimental results obtained on real quantum hardware. However, our approach applies to higher-degree polynomial objective functions as well as constrained optimization problems.



قيم البحث

اقرأ أيضاً

55 - David Biron 1998
Grovers algorithm for quantum searching of a database is generalized to deal with arbitrary initial amplitude distributions. First order linear difference equations are found for the time evolution of the amplitudes of the r marked and N-r unmarked s tates. These equations are solved exactly. An expression for the optimal measurement time T sim O(sqrt{N/r}) is derived which is shown to depend only on the initial average amplitudes of the marked and unmarked states. A bound on the probability of measuring a marked state is derived, which depends only on the standard deviation of the initial amplitude distributions of the marked or unmarked states.
Randomized benchmarking (RB) is a widely used method for estimating the average fidelity of gates implemented on a quantum computing device. The stochastic error of the average gate fidelity estimated by RB depends on the sampling strategy (i.e., how to sample sequences to be run in the protocol). The sampling strategy is determined by a set of configurable parameters (an RB configuration) that includes Clifford lengths (a list of the number of independent Clifford gates in a sequence) and the number of sequences for each Clifford length. The RB configuration is often chosen heuristically and there has been little research on its best configuration. Therefore, we propose a method for fully optimizing an RB configuration so that the confidence interval of the estimated fidelity is minimized while not increasing the total execution time of sequences. By experiments on real devices, we demonstrate the efficacy of the optimization method against heuristic selection in reducing the variance of the estimated fidelity.
We provide first evidence that under certain conditions, 1/2-spin fermions may naturally behave like a Grover search, looking for topological defects in a material. The theoretical framework is that of discrete-time quantum walks (QW), i.e. local uni tary matrices that drive the evolution of a single particle on the lattice. Some QW are well-known to recover the $(2+1)$--dimensional Dirac equation in continuum limit, i.e. the free propagation of the 1/2-spin fermion. We study two such Dirac QW, one on the square grid and the other on a triangular grid reminiscent of graphene-like materials. The numerical simulations show that the walker localises around the defects in $O(sqrt{N})$ steps with probability $O(1/log{N})$, in line with previous QW search on the grid. The main advantage brought by those of this paper is that they could be implemented as `naturally occurring freely propagating particles over a surface featuring topological---without the need for a specific oracle step. From a quantum computing perspective, however, this hints at novel applications of QW search : instead of using them to look for `good solutions within the configuration space of a problem, we could use them to look for topological properties of the entire configuration space.
We investigate the role of quantum coherence depletion (QCD) in Grover search algorithm (GA) by using several typical measures of quantum coherence and quantum correlations. By using the relative entropy of coherence measure ($mathcal{C}_r$), we show that the success probability depends on the QCD. The same phenomenon is also found by using the $l_1$ norm of coherence measure ($mathcal{C}_{l_1}$). In the limit case, the cost performance is defined to characterize the behavior about QCD in enhancing the success probability of GA, which is only related to the number of searcher items and the scale of database, no matter using $mathcal{C}_r$ or $mathcal{C}_{l_1}$. In generalized Grover search algorithm (GGA), the QCD for a class of states increases with the required optimal measurement time. In comparison, the quantification of other quantum correlations in GA, such as pairwise entanglement, multipartite entanglement, pairwise discord and genuine multipartite discord, cannot be directly related to the success probability or the optimal measurement time. Additionally, we do not detect pairwise nonlocality or genuine tripartite nonlocality in GA since Clauser-Horne-Shimony-Holt inequality and Svetlichnys inequality are not violated.
The landmark Grover algorithm for amplitude amplification serves as an essential subroutine in various type of quantum algorithms, with guaranteed quantum speedup in query complexity. However, there have been no proposal to realize the original motiv ating application of the algorithm, i.e., the database search or more broadly the pattern matching in a practical setting, mainly due to the technical difficulty in efficiently implementing the data loading and amplitude amplification processes. In this paper, we propose a quantum algorithm that approximately executes the entire Grover database search or pattern matching algorithm. The key idea is to use the recently proposed approximate amplitude encoding method on a shallow quantum circuit, together with the easily implementable inversion-test operation for realizing the projected quantum state having similarity to the query data, followed by the amplitude amplification independent to the target index. We provide a thorough demonstration of the algorithm in the problem of image pattern matching.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا