ﻻ يوجد ملخص باللغة العربية
In network function computation is as a means to reduce the required communication flow in terms of number of bits transmitted per source symbol. However, the rate region for the function computation problem in general topologies is an open problem, and has only been considered under certain restrictive assumptions (e.g. tree networks, linear functions, etc.). In this paper, we propose a new perspective for distributing computation, and formulate a flow-based delay cost minimization problem that jointly captures the costs of communications and computation. We introduce the notion of entropic surjectivity as a measure to determine how sparse the function is and to understand the limits of computation. Exploiting Littles law for stationary systems, we provide a connection between this new notion and the computation processing factor that reflects the proportion of flow that requires communications. This connection gives us an understanding of how much a node (in isolation) should compute to communicate the desired function within the network without putting any assumptions on the topology. Our analysis characterizes the functions only via their entropic surjectivity, and provides insight into how to distribute computation. We numerically test our technique for search, MapReduce, and classification tasks, and infer for each task how sensitive the processing factor to the entropic surjectivity is.
The astounding capacity requirements of 5G have motivated researchers to investigate the feasibility of many potential technologies, such as massive multiple-input multiple-output, millimeter wave, full-duplex, non-orthogonal multiple access, carrier
A source node updates its status as a point process and also forwards its updates to a network of observer nodes. Within the network of observers, these updates are forwarded as point processes from node to node. Each node wishes its knowledge of the
Millimeter-wave (mmWave) networks rely on directional transmissions, in both control plane and data plane, to overcome severe path-loss. Nevertheless, the use of narrow beams complicates the initial cell-search procedure where we lack sufficient info
In this paper we investigate the performance of caching schemes based on fountain codes in a heterogeneous satellite network. We consider multiple cache-aided hubs which are connected to a geostationary satellite through backhaul links. With the aimo
Timeliness is an emerging requirement for many Internet of Things (IoT) applications. In IoT networks, where a large-number of nodes are distributed, severe interference may incur during the transmission phase which causes age of information (AoI) de