ﻻ يوجد ملخص باللغة العربية
In this paper we investigate the performance of caching schemes based on fountain codes in a heterogeneous satellite network. We consider multiple cache-aided hubs which are connected to a geostationary satellite through backhaul links. With the aimof reducing the average number of transmissions over the satellite backhaul link, we propose the use of a caching scheme based on fountain codes. We derive a simple analytical expression of the average backhaul transmission rate and provide a tightupper bound on it. Furthermore, we show how the performance of the fountain code based caching scheme is similar to that of a caching scheme based on maximum distance separable codes.
Content caching is a widely studied technique aimed to reduce the network load imposed by data transmission during peak time while ensuring users quality of experience. It has been shown that when there is a common link between caches and the server,
Fog Radio Access Network (F-RAN) architectures can leverage both cloud processing and edge caching for content delivery to the users. To this end, F-RAN utilizes caches at the edge nodes (ENs) and fronthaul links connecting a cloud processor to ENs.
In this work, we propose a content caching and delivery strategy to maximize throughput capacity in cache-enabled wireless networks. To this end, efficient betweenness (EB), which indicates the ratio of content delivery paths passing through a node,
Caching has been regarded as a promising technique to alleviate energy consumption of sensors in Internet of Things (IoT) networks by responding to users requests with the data packets stored in the edge caching node (ECN). For real-time applications
We introduce a new family of Fountain codes that are systematic and also have sparse parities. Given an input of $k$ symbols, our codes produce an unbounded number of output symbols, generating each parity independently by linearly combining a logari