ﻻ يوجد ملخص باللغة العربية
We model a compact black hole-accretion disk system in the collapsar scenario with full transport, frequency dependent, general relativistic radiation magnetohydrodynamics. We examine whether or not winds from a collapsar disk can undergo rapid neutron capture (r-process) nucleosynthesis and significantly contribute to solar r-process abundances. We find the inclusion of accurate transport has significant effects on outflows, raising the electron fraction above $Y_{rm e} sim 0.3$ and preventing third peak r-process material from being synthesized. We analyze the time-evolution of neutrino processes and electron fraction in the disk and present a simple one-dimensional model for the vertical structure that emerges. We compare our simulation to semi-analytic expectations and argue that accurate neutrino transport and realistic initial and boundary conditions are required to capture the dynamics and nucleosynthetic outcome of a collapsar.
We present bhlight, a numerical scheme for solving the equations of general relativistic radiation magnetohydrodynamics (GRRMHD) using a direct Monte Carlo solution of the frequency-dependent radiative transport equation. bhlight is designed to evolv
Neutrino transport and neutrino-matter interactions are known to play an important role in the evolution of neutron star mergers, and of their post-merger remnants. Neutrinos cool remnants, drive post-merger winds, and deposit energy in the low-densi
We present a general procedure to solve numerically the general relativistic magnetohydrodynamics (GRMHD) equations within the framework of the 3+1 formalism. The work reported here extends our previous investigation in general relativistic hydrodyna
We present a new numerical code, ECHO, based on an Eulerian Conservative High Order scheme for time dependent three-dimensional general relativistic magnetohydrodynamics (GRMHD) and magnetodynamics (GRMD). ECHO is aimed at providing a shock-capturing
We present a covariant ray tracing algorithm for computing high-resolution neutrino distributions in general relativistic numerical spacetimes with hydrodynamical sources. Our formulation treats the very important effect of elastic scattering of neut