ﻻ يوجد ملخص باللغة العربية
We present a general procedure to solve numerically the general relativistic magnetohydrodynamics (GRMHD) equations within the framework of the 3+1 formalism. The work reported here extends our previous investigation in general relativistic hydrodynamics (Banyuls et al. 1997) where magnetic fields were not considered. The GRMHD equations are written in conservative form to exploit their hyperbolic character in the solution procedure. All theoretical ingredients necessary to build up high-resolution shock-capturing schemes based on the solution of local Riemann problems (i.e. Godunov-type schemes) are described. In particular, we use a renormalized set of regular eigenvectors of the flux Jacobians of the relativistic magnetohydrodynamics equations. In addition, the paper describes a procedure based on the equivalence principle of general relativity that allows the use of Riemann solvers designed for special relativistic magnetohydrodynamics in GRMHD. Our formulation and numerical methodology are assessed by performing various test simulations recently considered by different authors. These include magnetized shock tubes, spherical accretion onto a Schwarzschild black hole, equatorial accretion onto a Kerr black hole, and magnetized thick accretion disks around a black hole prone to the magnetorotational instability.
We model a compact black hole-accretion disk system in the collapsar scenario with full transport, frequency dependent, general relativistic radiation magnetohydrodynamics. We examine whether or not winds from a collapsar disk can undergo rapid neutr
We present a new numerical code, ECHO, based on an Eulerian Conservative High Order scheme for time dependent three-dimensional general relativistic magnetohydrodynamics (GRMHD) and magnetodynamics (GRMD). ECHO is aimed at providing a shock-capturing
We present bhlight, a numerical scheme for solving the equations of general relativistic radiation magnetohydrodynamics (GRRMHD) using a direct Monte Carlo solution of the frequency-dependent radiative transport equation. bhlight is designed to evolv
Our contribution concerns with the numerical solution of the 3D general relativistic hydrodynamical system of equations within the framework of the 3+1 formalism. We summarize the theoretical ingredients which are necessary in order to build up a num
We present a new numerical implementation of the general-relativistic resistive magnetohydrodynamics (MHD) equations within the Whisky code. The numerical method adopted exploits the properties of implicit-explicit Runge-Kutta numerical schemes to tr