ﻻ يوجد ملخص باللغة العربية
Polycyclic aromatic hydrocarbons (PAHs) are key species in astrophysical environments in which vacuum ultraviolet (VUV) photons are present, such as star-forming regions. The interaction with these VUV photons governs the physical and chemical evolution of PAHs. Models show that only large species can survive. However, the actual molecular properties of large PAHs are poorly characterized and the ones included in models are only an extrapolation of the properties of small and medium-sized species. We discuss here experiments performed on trapped ions including some at the SOLEIL VUV beam line DESIRS. We focus on the case of the large dicoronylene cation, C48H20+ , and compare its behavior under VUV processing with that of smaller species. We suggest that C2H2 is not a relevant channel in the fragmentation of large PAHs. Ionization is found to largely dominate fragmentation. In addition, we report evidence for a hydrogen dissociation channel through excited electronic states. Although this channel is minor, it is already effective below 13.6 eV and can significantly influence the stability of astro-PAHs. We emphasize that the competition between ionization and dissociation in large PAHs should be further evaluated for their use in astrophysical models.
We report on the absorption spectra of the polycyclic aromatic hydrocarbon (PAH) molecules anthracene, phenanthrene, and pyrene carrying either an ethynyl (-C2H) or a butadiynyl (-C4H) group. Measurements were carried out in the mid infrared at room
Interstellar polycyclic aromatic hydrocarbons (PAHs) are expected to be strongly processed by vacuum ultraviolet photons. Here, we report experimental studies on the ionization and fragmentation of coronene (C24H12), ovalene (C32H14) and hexa-peri-he
We present maps at high spatial and spectral resolution in emission lines of C2H, c-C3H2, C4H, 12CO and C18O of the edge of the Horsehead nebula obtained with the Plateau de Bure Interferometer (PdBI). The edge of the Horsehead nebula is a one-dimens
The high interstellar abundances of polycyclic aromatic hydrocarbons (PAHs) and their size distribution are the result of complex chemical processes implying dust, UV radiation, and the main gaseous components (H, C+, and O). These processes must exp
Here we propose a mechanism by which spin polarization can be generated dynamically in chiral molecular systems undergoing photo-induced electron transfer. The proposed mechanism explains how spin polarization emerges in systems where charge transpor