ﻻ يوجد ملخص باللغة العربية
The high interstellar abundances of polycyclic aromatic hydrocarbons (PAHs) and their size distribution are the result of complex chemical processes implying dust, UV radiation, and the main gaseous components (H, C+, and O). These processes must explain the high abundance of relatively small PAHs in the diffuse interstellar medium (ISM) and imply the continuous formation of some PAHs that are small enough (number of carbon atoms NC <~ 35-50) to be completely dehydrogenated by interstellar UV radiation. The carbon clusters Cn thus formed are constantly exposed to the absorption of ~10-13.6 eV UV photons, allowing isomerization and favoring the formation of the most stable isomers. They might tend to form irregular carbon cages. The frequent accretion of interstellar C+ ions could favor further cage isomerization, as is known in the laboratory for C60, possibly yielding most stable fullerenes, such as C40, C44, and C50. These fullerenes are expected to be very stable in the diffuse ISM because C2 ejection is not possible by single UV photon absorption, but could need rare two-photon absorption. It is possible that at least one of these fullerenes or its cation is as abundant as C60 or C60+ in the diffuse ISM, although this abundance is limited by the lack of observed matching features in observed mid-infrared spectra. B3LYP calculations of the visible spectrum for a number of fullerene isomers with 40 <~ NC <~ 50 show that they generally have a few spectral bands in the visible range, with f-values in the range of a few 10-2. This could make such fullerenes interesting candidates for the carriers of some diffuse interstellar bands.
[Abridged] Fullerenes have been recently detected in various circumstellar and interstellar environments, raising the question of their formation pathway. It has been proposed that they can form by the photo-chemical processing of large polycyclic ar
We present experimental data on H2 formation processes on gas-phase polycyclic aromatic hydrocarbon (PAH) cations. This process was studied by exposing coronene radical cations, confined in a radio-frequency ion trap, to gas phase H atoms. Sequential
[Abridged] We combine new CO(1-0) line observations of 24 intermediate redshift galaxies (0.03 < z < 0.28) along with literature data of galaxies at 0<z<4 to explore scaling relations between the dust and gas content using PAH 6.2 $mu$m ($L_{6.2}$),
We present observations which probe the small-scale structure of the interstellar medium using diffuse interstellar bands (DIBs). Towards HD 168075/6 in the Eagle Nebula, significant differences in DIB absorption are found between the two lines of si
In 1985, During experiments aimed at understanding the mechanisms by which long-chain carbon molecules are formed in interstellar space and circumstellar shells, Harry Kroto and his collaborators serendipitously discovered a new form of carbon: fulle