ﻻ يوجد ملخص باللغة العربية
The rowhammer bug allows an attacker to gain privilege escalation or steal private data. A key requirement of all existing rowhammer attacks is that an attacker must have access to at least part of an exploitable hammer row. We refer to such rowhammer attacks as PeriHammer. The state-of-the-art software-only defenses against PeriHammer attacks is to make the exploitable hammer rows beyond the attackers access permission. In this paper, we question the necessity of the above requirement and propose a new class of rowhammer attacks, termed as TeleHammer. It is a paradigm shift in rowhammer attacks since it crosses privilege boundary to stealthily rowhammer an inaccessible row by implicit DRAM accesses. Such accesses are achieved by abusing inherent features of modern hardware and or software. We propose a generic model to rigorously formalize the necessary conditions to initiate TeleHammer and PeriHammer, respectively. Compared to PeriHammer, TeleHammer can defeat the advanced software-only defenses, stealthy in hiding itself and hard to be mitigated. To demonstrate the practicality of TeleHammer and its advantages, we have created a TeleHammers instance, called PThammer, which leverages the address-translation feature of modern processors. We observe that a memory access from user space can induce a load of a Level-1 page-table entry (L1PTE) from memory and thus hammer the L1PTE once, although L1PTE is not accessible to us. To achieve a high enough hammering frequency, we flush relevant TLB and cache effectively and efficiently. To this end, we demonstrate PThammer on three different test machines and show that it can cross user-kernel boundary and induce the first bit flips in L1PTEs within 15 minutes of double-sided PThammering. We have exploited PThammer to defeat advanced software-only rowhammer defenses in default system setting.
Rowhammer is a hardware vulnerability in DRAM memory, where repeated access to memory can induce bit flips in neighboring memory locations. Being a hardware vulnerability, rowhammer bypasses all of the system memory protection, allowing adversaries t
This retrospective paper describes the RowHammer problem in Dynamic Random Access Memory (DRAM), which was initially introduced by Kim et al. at the ISCA 2014 conference~cite{rowhammer-isca2014}. RowHammer is a prime (and perhaps the first) example o
Testing of network services represents one of the biggest challenges in cyber security. Because new vulnerabilities are detected on a regular basis, more research is needed. These faults have their roots in the software development cycle or because o
The Rowhammer bug allows unauthorized modification of bits in DRAM cells from unprivileged software, enabling powerful privilege-escalation attacks. Sophisticated Rowhammer countermeasures have been presented, aiming at mitigating the Rowhammer bug o
The purpose of this document is to study the security properties of the Silver Bullet algorithm against worst-case RowHammer attacks. We mathematically demonstrate that Silver Bullet, when properly configured and implemented in a DRAM chip, can secur