ﻻ يوجد ملخص باللغة العربية
Rowhammer is a hardware vulnerability in DRAM memory, where repeated access to memory can induce bit flips in neighboring memory locations. Being a hardware vulnerability, rowhammer bypasses all of the system memory protection, allowing adversaries to compromise the integrity and confidentiality of data. Rowhammer attacks have shown to enable privilege escalation, sandbox escape, and cryptographic key disclosures. Recently, several proposals suggest exploiting the spatial proximity between the accessed memory location and the location of the bit flip for a defense against rowhammer. These all aim to deny the attackers permission to access memory locations near sensitive data. In this paper, we question the core assumption underlying these defenses. We present PThammer, a confused-deputy attack that causes accesses to memory locations that the attacker is not allowed to access. Specifically, PThammer exploits the address translation process of modern processors, inducing the processor to generate frequent accesses to protected memory locations. We implement PThammer, demonstrating that it is a viable attack, resulting in a system compromise (e.g., kernel privilege escalation). We further evaluate the effectiveness of proposed software-only defenses showing that PThammer can overcome those.
Recently, out-of-order execution, an important performance optimization in modern high-end processors, has been revealed to pose a significant security threat, allowing information leaks across security domains. In particular, the Meltdown attack lea
This retrospective paper describes the RowHammer problem in Dynamic Random Access Memory (DRAM), which was initially introduced by Kim et al. at the ISCA 2014 conference~cite{rowhammer-isca2014}. RowHammer is a prime (and perhaps the first) example o
The rowhammer bug allows an attacker to gain privilege escalation or steal private data. A key requirement of all existing rowhammer attacks is that an attacker must have access to at least part of an exploitable hammer row. We refer to such rowhamme
The purpose of this document is to study the security properties of the Silver Bullet algorithm against worst-case RowHammer attacks. We mathematically demonstrate that Silver Bullet, when properly configured and implemented in a DRAM chip, can secur
Aggressive memory density scaling causes modern DRAM devices to suffer from RowHammer, a phenomenon where rapidly activating a DRAM row can cause bit-flips in physically-nearby rows. Recent studies demonstrate that modern DRAM chips, including chips