ترغب بنشر مسار تعليمي؟ اضغط هنا

Electrostatic turbulence and Debye-scale structures in collisionless shocks

87   0   0.0 ( 0 )
 نشر من قبل Ivan Vasko
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present analysis of more than one hundred large-amplitude bipolar electrostatic structures in a quasi-perpendicular supercritical Earths bow shock crossing, measured by the Magnetospheric Multiscale spacecraft. The occurrence of the bipolar structures is shown to be tightly correlated with magnetic field gradients in the shock transition region. The bipolar structures have negative electrostatic potentials and spatial scales of a few Debye lengths. The bipolar structures propagate highly oblique to the shock normal with velocities (in the plasma rest frame) of the order of the ion-acoustic velocity. We argue that the bipolar structures are ion phase space holes produced by the two-stream instability between incoming and reflected ions. This is the first identification of the ion two-stream instability in collisionless shocks. The implications for electron acceleration are discussed.



قيم البحث

اقرأ أيضاً

89 - Honghong Wu 2021
Switchbacks are widely acknowledged phenomena observed by the Parker Solar Probe and appear to occur in patches. Previous studies focused on the fluctuations at the magnetic reversals. However, the nature of the fluctuations inside the switchbacks re mains unknown. Here we utilize the magnetic field data and plasma data measured by the Parker Solar Probe in the first four encounters. We investigate the fluctuations in the switchback intervals of 100 s with BR>0 at every instant and compare them to the fluctuations in the nonswitchback intervals of 100 s with theta_RB>160o at every instant. We calculate normalized cross-helicity sigma_c, normalized residual energy sigma_r, correlation coefficient C_vb between dvA and dv, Alfven ratio rA, and the amplitude of magnetic and kinetic fluctuations. We find that the switchback intervals exhibit a distribution of sigma_c similar with the nonswitchback intervals. However, the rA of switchback intervals is around 0.35, while the nonswitchback intervals have rA around 0.65, indicating the fluctuations in the switchbacks are more magnetically dominated. We also find that the distribution pattern of pixel average amplitude of both dvA and dv of switchback intervals in the C_vb-sigma_r plane show a vertical stripe feature at C_vb>0.8, illustrating the possible magnetically dominant magnetic-velocity alignment structure. These results will help us to understand the nature and the formation of the switchback turbulence.
Knowing the lengthscales at which turbulent fluctuations dissipate is key to understanding the nature of weakly compressible magnetohydrodynamic turbulence. We use radio wavelength interferometric imaging observations which measure the extent to whic h distant cosmic sources observed against the inner solar wind are scatter-broadened. We interpret these observations to determine that the dissipation scales of solar wind density turbulence at heliocentric distances of 2.5 -- 20.27 $R_{odot}$ range from $approx$ 13500 to 520 m. Our estimates from $approx$ 10--20 $R_{odot}$ suggest that the dissipation scale corresponds to the proton gyroradius. They are relevant to in-situ observations to be made by the Parker Solar Probe, and are expected to enhance our understanding of solar wind acceleration.
216 - Tsunehiko N. Kato 2014
We herein investigate shock formation and particle acceleration processes for both protons and electrons in a quasi-parallel high-Mach-number collisionless shock through a long-term, large-scale particle-in-cell simulation. We show that both protons and electrons are accelerated in the shock and that these accelerated particles generate large-amplitude Alfv{e}nic waves in the upstream region of the shock. After the upstream waves have grown sufficiently, the local structure of the collisionless shock becomes substantially similar to that of a quasi-perpendicular shock due to the large transverse magnetic field of the waves. A fraction of protons are accelerated in the shock with a power-law-like energy distribution. The rate of proton injection to the acceleration process is approximately constant, and in the injection process, the phase-trapping mechanism for the protons by the upstream waves can play an important role. The dominant acceleration process is a Fermi-like process through repeated shock crossings of the protons. This process is a `fast process in the sense that the time required for most of the accelerated protons to complete one cycle of the acceleration process is much shorter than the diffusion time. A fraction of the electrons is also accelerated by the same mechanism, and have a power-law-like energy distribution. However, the injection does not enter a steady state during the simulation, which may be related to the intermittent activity of the upstream waves. Upstream of the shock, a fraction of the electrons is pre-accelerated before reaching the shock, which may contribute to steady electron injection at a later time.
We report electrostatic Debye-scale turbulence developing within the diffusion region of asymmetric magnetopause reconnection with moderate guide field using observations by the Magnetospheric Multiscale (MMS) mission. We show that Buneman waves and beam modes cause efficient and fast thermalization of the reconnection electron jet by irreversible phase mixing, during which the jet kinetic energy is transferred into thermal energy. Our results show that the reconnection diffusion region in the presence of a moderate guide field is highly turbulent, and that electrostatic turbulence plays an important role in electron heating.
A two-dimensional particle-in-cell simulation is performed to investigate weakly magnetized perpendicular shocks with a magnetization parameter of 6 x 10^-5, which is equivalent to a high Alfven Mach number M_A of ~130. It is shown that current filam ents form in the foot region of the shock due to the ion-beam--Weibel instability (or the ion filamentation instability) and that they generate a strong magnetic field there. In the downstream region, these current filaments also generate a tangled magnetic field that is typically 15 times stronger than the upstream magnetic field. The thermal energies of electrons and ions in the downstream region are not in equipartition and their temperature ratio is T_e / T_i ~ 0.3 - 0.4. Efficient electron acceleration was not observed in our simulation, although a fraction of the ions are accelerated slightly on reflection at the shock. The simulation results agree very well with the Rankine-Hugoniot relations. It is also shown that electrons and ions are heated in the foot region by the Buneman instability (for electrons) and the ion-acoustic instability (for both electrons and ions). However, the growth rate of the Buneman instability is significantly reduced due to the relatively high temperature of the reflected ions. For the same reason, ion-ion streaming instability does not grow in the foot region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا