ﻻ يوجد ملخص باللغة العربية
Switchbacks are widely acknowledged phenomena observed by the Parker Solar Probe and appear to occur in patches. Previous studies focused on the fluctuations at the magnetic reversals. However, the nature of the fluctuations inside the switchbacks remains unknown. Here we utilize the magnetic field data and plasma data measured by the Parker Solar Probe in the first four encounters. We investigate the fluctuations in the switchback intervals of 100 s with BR>0 at every instant and compare them to the fluctuations in the nonswitchback intervals of 100 s with theta_RB>160o at every instant. We calculate normalized cross-helicity sigma_c, normalized residual energy sigma_r, correlation coefficient C_vb between dvA and dv, Alfven ratio rA, and the amplitude of magnetic and kinetic fluctuations. We find that the switchback intervals exhibit a distribution of sigma_c similar with the nonswitchback intervals. However, the rA of switchback intervals is around 0.35, while the nonswitchback intervals have rA around 0.65, indicating the fluctuations in the switchbacks are more magnetically dominated. We also find that the distribution pattern of pixel average amplitude of both dvA and dv of switchback intervals in the C_vb-sigma_r plane show a vertical stripe feature at C_vb>0.8, illustrating the possible magnetically dominant magnetic-velocity alignment structure. These results will help us to understand the nature and the formation of the switchback turbulence.
We present analysis of more than one hundred large-amplitude bipolar electrostatic structures in a quasi-perpendicular supercritical Earths bow shock crossing, measured by the Magnetospheric Multiscale spacecraft. The occurrence of the bipolar struct
The process of magnetic reconnection when studied in Nature or when modeled in 3D simulations differs in one key way from the standard 2D paradigmatic cartoon: it is accompanied by much fluctuations in the electromagnetic fields and plasma properties
The motivation for this study is to include the effect of plasma flow in Alfven wave (AW) damping via phase mixing and to explore the observational implications. Our magnetohydrodynamic (MHD) simulations and analytical calculations show that, when a
The Eulerian space-time correlation of strong Magnetohydrodynamic (MHD) turbulence in strongly magnetized plasmas is investigated by means of direct numerical simulations of Reduced MHD turbulence and phenomenological modeling. Two new important resu
A dynamical approach, rather than the usual statistical approach, is taken to explore the physical mechanisms underlying the nonlinear transfer of energy, the damping of the turbulent fluctuations, and the development of coherent structures in kineti