ﻻ يوجد ملخص باللغة العربية
Non-smooth regularization is widely used in image reconstruction to eliminate the noise while preserving subtle image structures. In this work, we investigate the use of proximal Newton (PN) method to solve an optimization problem with a smooth data-fidelity term and total variation (TV) regularization arising from image reconstruction applications. Specifically, we consider a nonlinear Poisson-modeled single-energy X-ray computed tomography reconstruction problem with the data-fidelity term given by the I-divergence. The PN algorithm is compared to state-of-the-art first-order proximal algorithms, such as the well-established fast iterative shrinkage and thresholding algorithm (FISTA), both in terms of the number of iterations and time to solutions. We discuss the key factors that influence the performance of PN, including the strength of regularization, the stopping criterion for both sub-problem and main-problem, and the use of exact or approximated Hessian operators.
In this paper, an inexact proximal-point penalty method is studied for constrained optimization problems, where the objective function is non-convex, and the constraint functions can also be non-convex. The proposed method approximately solves a sequ
We present a framework for the simulation of rigid and deformable bodies in the presence of contact and friction. Our method is based on a non-smooth Newton iteration that solves the underlying nonlinear complementarity problems (NCPs) directly. This
The aim of this paper is to discuss some advanced aspects of image reconstruction in single-pixel cameras, focusing in particular on detectors in the THz regime. We discuss the reconstruction problem from a computational imaging perspective and provi
Like many other advanced imaging methods, x-ray phase contrast imaging and tomography require mathematical inversion of the observed data to obtain real-space information. While an accurate forward model describing the generally nonlinear image forma
The Approximate Message Passing (AMP) algorithm efficiently reconstructs signals which have been sampled with large i.i.d. sub-Gaussian sensing matrices. Central to AMP is its state evolution, which guarantees that the difference between the current