ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Smooth Newton Methods for Deformable Multi-Body Dynamics

76   0   0.0 ( 0 )
 نشر من قبل Miles Macklin
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a framework for the simulation of rigid and deformable bodies in the presence of contact and friction. Our method is based on a non-smooth Newton iteration that solves the underlying nonlinear complementarity problems (NCPs) directly. This approach allows us to support nonlinear dynamics models, including hyperelastic deformable bodies and articulated rigid mechanisms, coupled through a smooth isotropic friction model. The fixed-point nature of our method means it requires only the solution of a symmetric linear system as a building block. We propose a new complementarity preconditioner for NCP functions that improves convergence, and we develop an efficient GPU-based solver based on the conjugate residual (CR) method that is suitable for interactive simulations. We show how to improve robustness using a new geometric stiffness approximation and evaluate our methods performance on a number of robotics simulation scenarios, including dexterous manipulation and training using reinforcement learning.



قيم البحث

اقرأ أيضاً

Non-smooth regularization is widely used in image reconstruction to eliminate the noise while preserving subtle image structures. In this work, we investigate the use of proximal Newton (PN) method to solve an optimization problem with a smooth data- fidelity term and total variation (TV) regularization arising from image reconstruction applications. Specifically, we consider a nonlinear Poisson-modeled single-energy X-ray computed tomography reconstruction problem with the data-fidelity term given by the I-divergence. The PN algorithm is compared to state-of-the-art first-order proximal algorithms, such as the well-established fast iterative shrinkage and thresholding algorithm (FISTA), both in terms of the number of iterations and time to solutions. We discuss the key factors that influence the performance of PN, including the strength of regularization, the stopping criterion for both sub-problem and main-problem, and the use of exact or approximated Hessian operators.
121 - Xiao Ma , David Hsu , Wee Sun Lee 2021
Manipulating deformable objects, such as cloth and ropes, is a long-standing challenge in robotics: their large number of degrees of freedom (DoFs) and complex non-linear dynamics make motion planning extremely difficult. This work aims to learn late nt Graph dynamics for DefOrmable Object Manipulation (G-DOOM). To tackle the challenge of many DoFs and complex dynamics, G-DOOM approximates a deformable object as a sparse set of interacting keypoints and learns a graph neural network that captures abstractly the geometry and interaction dynamics of the keypoints. Further, to tackle the perceptual challenge, specifically, object self-occlusion, G-DOOM adds a recurrent neural network to track the keypoints over time and condition their interactions on the history. We then train the resulting recurrent graph dynamics model through contrastive learning in a high-fidelity simulator. For manipulation planning, G-DOOM explicitly reasons about the learned dynamics model through model-predictive control applied at each of the keypoints. We evaluate G-DOOM on a set of challenging cloth and rope manipulation tasks and show that G-DOOM outperforms a state-of-the-art method. Further, although trained entirely on simulation data, G-DOOM transfers directly to a real robot for both cloth and rope manipulation in our experiments.
Recent work on the multi-agent pathfinding problem (MAPF) has begun to study agents with motion that is more complex, for example, with non-unit action durations and kinematic constraints. An important aspect of MAPF is collision detection. Many coll ision detection approaches exist, but often suffer from issues such as high computational cost or causing false negative or false positive detections. In practice, these issues can result in problems that range from inefficiency and annoyance to catastrophic. The main contribution of this technical report is to provide a high-level overview of major categories of collision detection, along with methods of collision detection and anticipatory collision avoidance for agents that are both computationally efficient and highly accurate.
We provide improved convergence rates for various emph{non-smooth} optimization problems via higher-order accelerated methods. In the case of $ell_infty$ regression, we achieves an $O(epsilon^{-4/5})$ iteration complexity, breaking the $O(epsilon^{-1 })$ barrier so far present for previous methods. We arrive at a similar rate for the problem of $ell_1$-SVM, going beyond what is attainable by first-order methods with prox-oracle access for non-smooth non-strongly convex problems. We further show how to achieve even faster rates by introducing higher-order regularization. Our results rely on recent advances in near-optimal accelerated methods for higher-order smooth convex optimization. In particular, we extend Nesterovs smoothing technique to show that the standard softmax approximation is not only smooth in the usual sense, but also emph{higher-order} smooth. With this observation in hand, we provide the first example of higher-order acceleration techniques yielding faster rates for emph{non-smooth} optimization, to the best of our knowledge.
For solving large-scale non-convex problems, we propose inexact variants of trust region and adaptive cubic regularization methods, which, to increase efficiency, incorporate various approximations. In particular, in addition to approximate sub-probl em solves, both the Hessian and the gradient are suitably approximated. Using rather mild conditions on such approximations, we show that our proposed inexact methods achieve similar optimal worst-case iteration complexities as the exact counterparts. Our proposed algorithms, and their respective theoretical analysis, do not require knowledge of any unknowable problem-related quantities, and hence are easily implementable in practice. In the context of finite-sum problems, we then explore randomized sub-sampling methods as ways to construct the gradient and Hessian approximations and examine the empirical performance of our algorithms on some real datasets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا