ﻻ يوجد ملخص باللغة العربية
In a previous article [J. Chem. Phys. 138, 084108 (2013)], we showed that the $tto 0_+$ limit of ring-polymer molecular dynamics (RPMD) rate-theory is also the $tto 0_+$ limit of a new type of quantum flux-side time-correlation function, in which the dividing surfaces are invariant to imaginary-time translation; in other words, that RPMD transition-state theory (RPMD-TST) is a $tto 0_+$ quantum transition-state theory (QTST). Recently, Jang and Voth [J. Chem. Phys. 144, 084110 (2016)] rederived this quantum $tto 0_+$ limit, and claimed that it gives instead the centroid-density approximation. Here we show that the $tto 0_+$ limit derived by Jang and Voth is in fact RPMD-TST.
We present a new non-adiabatic ring polymer molecular dynamics (NRPMD) method based on the spin mapping formalism, which we refer to as the spin-mapping NRPMD (SM-NRPMD) approach. We derive the path-integral partition function expression using the sp
We obtain thermostatted ring polymer molecular dynamics (TRPMD) from exact quantum dynamics via Matsubara dynamics, a recently-derived form of linearization which conserves the quantum Boltzmann distribution. Performing a contour integral in the comp
Two of the most successful methods that are presently available for simulating the quantum dynamics of condensed phase systems are centroid molecular dynamics (CMD) and ring polymer molecular dynamics (RPMD). Despite their conceptual differences, pra
The ring-polymer molecular dynamics (RPMD) was used to calculate the thermal rate coefficients of the two-channel roaming reaction H + MgH. Both reaction channels, tight and roaming, are explicitly considered. This is a pioneering attempt of exerting
We apply Thermostatted Ring Polymer Molecular Dynamics (TRPMD), a recently-proposed approximate quantum dynamics method, to the computation of thermal reaction rates. Its short-time Transition-State Theory (TST) limit is identical to rigorous Quantum