ﻻ يوجد ملخص باللغة العربية
As one of the possible signals for the whereabouts of the critical point on the QCD phase diagram, recently, the multiplicity fluctuations in heavy-ion collisions have aroused much attention. It is a crucial observable of the Beam Energy Scan program of the Relativistic Heavy Ion Collider. In this work, we investigate the centrality dependence of the multiplicity fluctuations regarding the recent measurements from STAR Collaboration. By employing a hydrodynamical approach, the present study is dedicated to the noncritical aspects of the phenomenon. To be specific, in addition to the thermal fluctuations, finite volume corrections, and resonance decay at the freeze-out surface, the model is focused on the properties of the hydrodynamic expansion of the system and the event-by-event initial fluctuations. It is understood that the real signal of the critical point can only be obtained after appropriately subtracting the background, the latter is investigated in the present work. Besides the experimental data, our results are also compared to those of the hadronic resonance gas, as well as transport models.
We discuss multiplicity fluctuations of charged particles produced in nuclear collisions measured event-by-event by the NA49 experiment at CERN SPS within the Glauber Monte Carlo approach. We use the concepts of wounded nucleons and wounded quarks in
In the framework of the classical Glauber approach the exact analytical expression for the variance of the number of participants (wounded nucleons) for given centrality AA interactions is presented. Its shown, that in the case of nucleus-nucleus col
The region of large net-baryon densities in the QCD phase diagram is expected to exhibit a first-order phase transition. Experimentally, its study will be one of the primaryobjectives for the upcoming FAIR accelerator. We model the transition between
We extend the numerical analysis of the energy and centrality dependence of particle multiplicities at midrapidity in high-energy p+A and A+A collisions from a running coupling $k_T$-factorization formula made in~cite{Dumitru:2018gjm} by considering
In the framework of the classical Glauber approach, the analytical expressions for the variance of the number of wounded nucleons and binary collisions in AA interactions at a given centrality are presented. Along with the optical approximation term,