ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiplicity fluctuations at the quark-hadron phase transition from a fluid dynamical model

142   0   0.0 ( 0 )
 نشر من قبل Christoph Herold
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The region of large net-baryon densities in the QCD phase diagram is expected to exhibit a first-order phase transition. Experimentally, its study will be one of the primaryobjectives for the upcoming FAIR accelerator. We model the transition between quarks and hadrons in a heavy-ion collision using a fluid which is coupled to the explicit dynamics of the chiral order parameter and a dilaton field. This allows us to investigate signals stemming from the nonequilibrium evolution during the expansion of the hot plasma. Special emphasis is put on an event-by-event analysis of baryon number fluctuations which have long since been claimed to be sensitive to a critical point.



قيم البحث

اقرأ أيضاً

145 - Kanako Yamazaki , T. Matsui 2012
We study quark-hadron phase transition at finite temperature with zero net baryon density by the Nambu-Jona-Lasinio model for interacting quarks in uniform background temporal color gauge fields. At low temperatures, unphysical thermal quark-antiquar k excitations which would appear in the mean field approximation, are eliminated by en- forcing vanishing expectation value of the Polyakov-loop of the background gauge field, while at high temperatures this expectation value is taken as unity allowing thermal excitations of free quarks and antiquarks. Mesonic excitations in the low temperature phase appear in the correlation energy as contributions of collective excitations. We describe them in terms of thermal fluctuations of auxiliary fields in one-loop (Gaus- sian) approximation, where pions appear as Nambu-Goldstone modes associated with dynamical symmetry breaking of the chiral symmetry in the limit of vanishing bare quark masses. We show that at low temperatures the equations of state reduces to that of free meson gas with small corrections arising from the composite nature of mesons. At high temperatures, all these collective mesonic excitations melt into continuum of quark anti-quark excitations and mesonic correlations gives only small contributions the pressure of the system.
In this work we present the features of the hadron-quark phase transition diagrams in which the pions are included in the system. To construct such diagrams we use two different models in the description of the hadronic and quark sectors. At the quar k level, we consider two distinct parametrizations of the Polyakov-Nambu-Jona-Lasinio (PNJL) models. In the hadronic side, we use a well known relativistic mean-field (RMF) nonlinear Walecka model. We show that the effect of the pions on the hadron-quark phase diagrams is to move the critical end point (CEP) of the transitions lines. Such an effect also depends on the value of the critical temperature (T_0) in the pure gauge sector used to parametrize the PNJL models. Here we treat the phase transitions using two values for T_0, namely, T_0 = 270 MeV and T_0 = 190 MeV. The last value is used to reproduce lattice QCD data for the transition temperature at zero chemical potential.
We study the nucleation of a quark gluon plasma (QGP) phase in a hadron gas at low temperatures and high baryon densities. This kind of process will presumably happen very often in nuclear collisions at FAIR and NICA. When the appropriate energy dens ities (or baryon densities) and temperatures are reached the conversion of one phase into another is not instantaneous. It is a complex process, which involves the nucleation of bubbles of the new phase. One important element of this transition process is the rate of growth of a QGP bubble. In order to estimate it we solve the Relativistic Rayleigh$-$Plesset equation which governs the dynamics of a relativistic spherical bubble in a strongly interacting medium. The baryon rich hadron gas is represented by the nonlinear Walecka model and the QGP is described by the MIT bag model and also by a mean field model of QCD.
175 - Kanako Yamazaki , T. Matsui 2013
We study the quark-hadron phase transition by using a three flavor Nambu-Jona-Lasinio model with the Polyakov loop at zero chemical potential, extending our previous work with two flavor model. We show that the equation of state at low temperatures i s dominated by pions and kaons as collective modes of quarks and anti-quarks. As temperature increases, mesonic collective modes melt into the continuum of quark and anti-quark so that hadronic phase changes continuously to the quark phase where quark excitations dominate pressure.
As one of the possible signals for the whereabouts of the critical point on the QCD phase diagram, recently, the multiplicity fluctuations in heavy-ion collisions have aroused much attention. It is a crucial observable of the Beam Energy Scan program of the Relativistic Heavy Ion Collider. In this work, we investigate the centrality dependence of the multiplicity fluctuations regarding the recent measurements from STAR Collaboration. By employing a hydrodynamical approach, the present study is dedicated to the noncritical aspects of the phenomenon. To be specific, in addition to the thermal fluctuations, finite volume corrections, and resonance decay at the freeze-out surface, the model is focused on the properties of the hydrodynamic expansion of the system and the event-by-event initial fluctuations. It is understood that the real signal of the critical point can only be obtained after appropriately subtracting the background, the latter is investigated in the present work. Besides the experimental data, our results are also compared to those of the hadronic resonance gas, as well as transport models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا