ﻻ يوجد ملخص باللغة العربية
As new techniques exploiting the Earths ambient seismic noise field are developed and applied, such as for the observation of temporal changes in seismic velocity structure, it is crucial to quantify the precision with which wave-type measurements can be made. This work uses array data at the Homestake mine in Lead, South Dakota and an array at Sweetwater, Texas to consider two aspects that control this precision: the types of seismic wave contributing to the ambient noise field at microseism frequencies and the effect of array geometry. Both are quantified using measurements of wavefield coherence between stations in combination with Wiener filters. We find a strong seasonal change between body-wave and surface-wave content. Regarding the inclusion of underground stations, we quantify the lower limit to which the ambient noise field can be characterized and reproduced; the applications of the Wiener filters are about 4 times more successful in reproducing ambient noise waveforms when underground stations are included in the array, resulting in predictions of seismic timeseries with less than a 1% residual, and are ultimately limited by the geometry and aperture of the array, as well as by temporal variations in the seismic field. We discuss the implications of these results for the geophysics community performing ambient seismic noise studies, as well as for the cancellation of seismic Newtonian gravity noise in ground-based, sub-Hz, gravitational-wave detectors.
Many major oceanographic internal wave observational programs of the last 4 decades are reanalyzed in order to characterize variability of the deep ocean internal wavefield. The observations are discussed in the context of the universal spectral mode
The Virgo gravitational wave detector is an interferometer (ITF) with 3km arms located in Pisa, Italy. From July to October 2010, Virgo performed its third science run (VSR3) in coincidence with the LIGO detectors. Despite several techniques adopted
Most of the seismic inversion techniques currently proposed focus on robustness with respect to the background model choice or inaccurate physical modeling assumptions, but are not apt to large-scale 3D applications. On the other hand, methods that a
We study the estimation of parameters in a quantum metrology scheme based on entangled many-body Unruh-DeWitt detectors. It is found that the precision for the estimation of Unruh effect can be enhanced via initial state preparations and parameter se
Achieving desirable receiver sampling in ocean bottom acquisition is often not possible because of cost considerations. Assuming adequate source sampling is available, which is achievable by virtue of reciprocity and the use of modern randomized (sim