ﻻ يوجد ملخص باللغة العربية
We study the estimation of parameters in a quantum metrology scheme based on entangled many-body Unruh-DeWitt detectors. It is found that the precision for the estimation of Unruh effect can be enhanced via initial state preparations and parameter selections. It is shown that the precision in the estimation of the Unruh temperature in terms of a many-body-probe metrology is always better than the precision in two probe strategies. The proper acceleration for Bobs detector and the interaction between the accelerated detector and the external field have significant influences on the precision for the Unruh effects estimation. In addition, the probe state prepared with more excited atoms in the initial state is found to perform better than less excited initial states. However, different from the estimation of the Unruh temperature, the estimation of the effective coupling parameter for the accelerated detector requires more total atoms but less excited atoms in the estimations.
In the Unruh effect an observer with constant acceleration perceives the quantum vacuum as thermal radiation. The Unruh effect has been believed to be a pure quantum phenomenon, but here we show theoretically how the effect arises from the classical
In this work we suggest a sufficiently simple for understanding without knowing the details of the quantum gravity and quite correct deduction of the Unruh temperature (but not whole Unruh radiation process!). Firstly, we shall directly apply usual c
One of the primary reasons behind the difficulty in observing the Unruh effect is that for achievable acceleration scales the finite temperature effects are significant only for the low frequency modes of the field. Since the density of field modes f
We aim to build a simple model of a gas with temperature ($T$) in thermal equilibrium with a black-body that plays the role of the adiabatically expanding universe, so that each particle of such a gas mimics a kind of particle (quantum) of dark energ
We study the anti-Unruh effect for an entangled quantum state in reference to the counterintuitive cooling previously pointed out for an accelerated detector coupled to the vacuum. We show that quantum entanglement for an initially entangled (spaceli