ﻻ يوجد ملخص باللغة العربية
Mixing of binary fluids by moving stirrers is a commonplace process in many industrial applications, where even modest improvements in mixing efficiency could translate into considerable power savings or enhanced product quality. We propose a gradient-based nonlinear optimization scheme to minimize the mix-norm of a passive scalar. The velocities of two cylindrical stirrers, moving on concentric circular paths inside a circular container, represent the control variables, and an iterative direct-adjoint algorithm is employed to arrive at enhanced mixing results. The associated stirring protocol is characterized by a complex interplay of vortical structures, generated and promoted by the stirrers action. Full convergence of the optimization process requires constraints that penalize the acceleration of the moving bodies. Under these conditions, considerable mixing enhancement can be accomplished, even though an optimum cannot be guaranteed due to the non-convex nature of the optimization problem. Various challenges and extensions of our approach are discussed.
Mixing is an omnipresent process in a wide-range of industrial applications, which supports scientific efforts to devise techniques for optimising mixing processes under time and energy constraints. In this endeavor, we present a computational framew
The mixing of binary fluids by stirrers is a commonplace procedure in many industrial and natural settings, and mixing efficiency directly translates into more homogeneous final products, more enriched compounds, and often substantial economic saving
A computational framework based on nonlinear direct-adjoint looping is presented for optimizing mixing strategies for binary fluid systems. The governing equations are the nonlinear Navier-Stokes equations, augmented by an evolution equation for a pa
The Cahn-Hilliard equation describes phase separation in binary liquids. Here we study this equation with spatially-varying sources and stirring, or advection. We specialize to symmetric mixtures and time-independent sources and discuss stirring stra
We develop an adversarial-reinforcement learning scheme for microswimmers in statistically homogeneous and isotropic turbulent fluid flows, in both two (2D) and three dimensions (3D). We show that this scheme allows microswimmers to find non-trivial