ﻻ يوجد ملخص باللغة العربية
Mixing is an omnipresent process in a wide-range of industrial applications, which supports scientific efforts to devise techniques for optimising mixing processes under time and energy constraints. In this endeavor, we present a computational framework based on nonlinear direct-adjoint looping for the enhancement of mixing efficiency in a binary fluid system. The governing equations consist of the non-linear Navier-Stokes equations, complemented by an evolution equation for a passive scalar. Immersed and moving stirrers are treated by a Brinkman-penalisation technique, and the full system of equations is solved using a Fourier-based pseudospectral approach. The adjoint equations provide gradient and sensitivity information which is in turn used to improve an initial mixing strategy, based on shape, rotational and path modifications. We utilise a Fourier-based approach for parameterising and optimising the embedded stirrers and consider a variety of geometries to achieve enhanced mixing efficiency. We consider a restricted optimisation space by limiting the time for mixing and the rotational velocities of all stirrers. In all cases, non-intuitive shapes are found which produce significantly enhanced mixing efficiency.
Mixing of binary fluids by moving stirrers is a commonplace process in many industrial applications, where even modest improvements in mixing efficiency could translate into considerable power savings or enhanced product quality. We propose a gradien
A computational framework based on nonlinear direct-adjoint looping is presented for optimizing mixing strategies for binary fluid systems. The governing equations are the nonlinear Navier-Stokes equations, augmented by an evolution equation for a pa
The mixing of binary fluids by stirrers is a commonplace procedure in many industrial and natural settings, and mixing efficiency directly translates into more homogeneous final products, more enriched compounds, and often substantial economic saving
Particles transported in fluid flows, such as cells, polymers, or nanorods, are rarely spherical. In this study, we numerically and theoretically investigate the dispersion of an initially localized patch of passive elongated Brownian particles const
We study the dynamics of simple reactions where the chemical species are confined on a general, time-modulated surface, and subjected to externally-imposed stirring. The study of these inhomogeneous effects requires a model based on a reaction-advect