ﻻ يوجد ملخص باللغة العربية
In this paper we derive the continuum limit of a multiple-species, interacting particle system by proving a $Gamma$-convergence result on the interaction energy as the number of particles tends to infinity. As the leading application, we consider $n$ edge dislocations in multiple slip systems. Since the interaction potential of dislocations has a logarithmic singularity at zero with a sign that depends on the orientation of the slip systems, the interaction energy is unbounded from below. To make the minimization problem of this energy meaningful, we follow the common approach to regularise the interaction potential over a length-scale $delta > 0$. The novelty of our result is that we leave the emph{type} of regularisation general, and that we consider the joint limit $n to infty$ and $delta to 0$. Our result shows that the limit behaviour of the interaction energy is not affected by the type of the regularisation used, but that it may depend on how fast the emph{size} (i.e., $delta$) decays as $n to infty$.
In this paper we prove the convergence of solutions to discrete models for binary waveguide arrays toward those of their formal continuum limit, for which we also show the existence of localized standing waves. This work rigorously justifies formal a
The inviscid limit for the two-dimensional compressible viscoelastic equations on the half plane is considered under the no-slip boundary condition. When the initial deformation tensor is a perturbation of the identity matrix and the initial density
We offer a simple and self-contained proof that the Follow-the-Leader model converges to the Lighthill-Whitham-Richards model for traffic flow.
Earthquakes cause lasting changes in static equilibrium, resulting in global deformation fields that can be observed. Consequently, deformation measurements such as those provided by satellite based InSAR monitoring can be used to infer an earthquake
Pinning interaction between a screw dislocation and a void in fcc copper is investigated by means of molecular dynamics simulation. A screw dislocation bows out to undergo depinning on the original glide plane at low temperatures, where the behavior