ﻻ يوجد ملخص باللغة العربية
Earthquakes cause lasting changes in static equilibrium, resulting in global deformation fields that can be observed. Consequently, deformation measurements such as those provided by satellite based InSAR monitoring can be used to infer an earthquakes faulting mechanism. This inverse problem requires a numerical forward model that is both accurate and fast, as typical inverse procedures require many evaluations. The Weakly-enforced Slip Method (WSM) was developed to meet these needs, but it was not before applied in an inverse problem setting. Consequently, it was unknown what effect particular properties of the WSM, notably its inherent continuity, have on the inversion process. Here we show that the WSM is able to accurately recover slip distributions in a Bayesian-inference setting, provided that data points in the vicinity of the fault are removed. In a representative scenario, an element size of 2 km was found to be sufficiently fine to generate a posterior probability distribution that is close to the theoretical optimum. For rupturing faults a masking zone of 20 km sufficed to avoid numerical disturbances that would otherwise be induced by the discretization error. These results demonstrate that the WSM is a viable forward method for earthquake inversion problems. While our synthesized scenario is basic for reasons of validation, our results are expected to generalize to the wider gamut of scenarios that finite element methods are able to capture. This has the potential to bring modeling flexibility to a field that if often forced to impose model restrictions in a concession to computability.
Tectonic faults are commonly modelled as Volterra or Somigliana dislocations in an elastic medium. Various solution methods exist for this problem. However, the methods used in practice are often limiting, motivated by reasons of computational effici
In this paper we derive the continuum limit of a multiple-species, interacting particle system by proving a $Gamma$-convergence result on the interaction energy as the number of particles tends to infinity. As the leading application, we consider $n$
Data-driven machine-learning for predicting instantaneous and future fault-slip in laboratory experiments has recently progressed markedly due to large training data sets. In Earth however, earthquake interevent times range from 10s-100s of years and
We investigate the nature of friction in granular layers by means of numerical simulation focusing on the critical slip distance, over which the system relaxes to a new stationary state. Analyzing a transient process in which the sliding velocity is
It is well understood that boundary conditions (BCs) may cause global radial basis function (RBF) methods to become unstable for hyperbolic conservation laws (CLs). Here we investigate this phenomenon and identify the strong enforcement of BCs as the