ﻻ يوجد ملخص باللغة العربية
Adversarial examples are commonly viewed as a threat to ConvNets. Here we present an opposite perspective: adversarial examples can be used to improve image recognition models if harnessed in the right manner. We propose AdvProp, an enhanced adversarial training scheme which treats adversarial examples as additional examples, to prevent overfitting. Key to our method is the usage of a separate auxiliary batch norm for adversarial examples, as they have different underlying distributions to normal examples. We show that AdvProp improves a wide range of models on various image recognition tasks and performs better when the models are bigger. For instance, by applying AdvProp to the latest EfficientNet-B7 [28] on ImageNet, we achieve significant improvements on ImageNet (+0.7%), ImageNet-C (+6.5%), ImageNet-A (+7.0%), Stylized-ImageNet (+4.8%). With an enhanced EfficientNet-B8, our method achieves the state-of-the-art 85.5% ImageNet top-1 accuracy without extra data. This result even surpasses the best model in [20] which is trained with 3.5B Instagram images (~3000X more than ImageNet) and ~9.4X more parameters. Models are available at https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet.
Deep neural networks have been proved that they are vulnerable to adversarial examples, which are generated by adding human-imperceptible perturbations to images. To defend these adversarial examples, various detection based methods have been propose
Fooling people with highly realistic fake images generated with Deepfake or GANs brings a great social disturbance to our society. Many methods have been proposed to detect fake images, but they are vulnerable to adversarial perturbations -- intentio
Deep neural networks (DNNs) have been demonstrated to be vulnerable to adversarial examples. Specifically, adding imperceptible perturbations to clean images can fool the well trained deep neural networks. In this paper, we propose an end-to-end imag
This paper investigates the visual quality of the adversarial examples. Recent papers propose to smooth the perturbations to get rid of high frequency artefacts. In this work, smoothing has a different meaning as it perceptually shapes the perturbati
There has been a rise in the use of Machine Learning as a Service (MLaaS) Vision APIs as they offer multiple services including pre-built models and algorithms, which otherwise take a huge amount of resources if built from scratch. As these APIs get