ﻻ يوجد ملخص باللغة العربية
Deep neural networks (DNNs) have been demonstrated to be vulnerable to adversarial examples. Specifically, adding imperceptible perturbations to clean images can fool the well trained deep neural networks. In this paper, we propose an end-to-end image compression model to defend adversarial examples: textbf{ComDefend}. The proposed model consists of a compression convolutional neural network (ComCNN) and a reconstruction convolutional neural network (ResCNN). The ComCNN is used to maintain the structure information of the original image and purify adversarial perturbations. And the ResCNN is used to reconstruct the original image with high quality. In other words, ComDefend can transform the adversarial image to its clean version, which is then fed to the trained classifier. Our method is a pre-processing module, and does not modify the classifiers structure during the whole process. Therefore, it can be combined with other model-specific defense models to jointly improve the classifiers robustness. A series of experiments conducted on MNIST, CIFAR10 and ImageNet show that the proposed method outperforms the state-of-the-art defense methods, and is consistently effective to protect classifiers against adversarial attacks.
Adversarial examples have become one of the largest challenges that machine learning models, especially neural network classifiers, face. These adversarial examples break the assumption of attack-free scenario and fool state-of-the-art (SOTA) classif
Adversarial examples are commonly viewed as a threat to ConvNets. Here we present an opposite perspective: adversarial examples can be used to improve image recognition models if harnessed in the right manner. We propose AdvProp, an enhanced adversar
Deep neural networks have been proved that they are vulnerable to adversarial examples, which are generated by adding human-imperceptible perturbations to images. To defend these adversarial examples, various detection based methods have been propose
Fooling people with highly realistic fake images generated with Deepfake or GANs brings a great social disturbance to our society. Many methods have been proposed to detect fake images, but they are vulnerable to adversarial perturbations -- intentio
We present a learned image compression system based on GANs, operating at extremely low bitrates. Our proposed framework combines an encoder, decoder/generator and a multi-scale discriminator, which we train jointly for a generative learned compressi