ﻻ يوجد ملخص باللغة العربية
This paper proposes an event-triggered add-on safety mechanism to adjust the control parameters for timely braking in a networked vehicular system while maintaining maneuverability. Passenger vehicle maneuverability is significantly affected by the combined-slip friction effect, in which larger longitudinal tire slips result in considerable drop in lateral tire forces. This is of higher importance when unexpected dangerous situations occur on the road and immediate actions, such as braking, need to be taken to avoid collision. Harsh braking can lead to high-slip and loss of maneuverability, hence, timely braking is essential to reduce high-slip scenarios. In addition to the vehicles own active safety systems, the proposed event-triggered add-on safety is activated upon being informed about dangers by the road-side infrastructure. The aim is to incorporate the add-on safety feature to adjust the automatic control parameters for smooth and timely braking such that a collision is avoided while vehicles maneuverability is maintained. We study two different wireless technologies for communication between the infrastructure and the vehicles, the Long-Term Evolution (LTE) and the fifth generation (5G) schemes. The framework is validated through high-fidelity software simulations and the advantages of including the add-on feature to augment the safety margins for each communication technology is evaluated.
By using various sensors to measure the surroundings and sharing local sensor information with the surrounding vehicles through wireless networks, connected and automated vehicles (CAVs) are expected to increase safety, efficiency, and capacity of ou
Connected and Automated Vehicles (CAVs) rely on the correctness of position and other vehicle kinematics information to fulfill various driving tasks such as vehicle following, lane change, and collision avoidance. However, a malicious vehicle may se
The paper considers the problem of controlling Connected and Automated Vehicles (CAVs) traveling through a three-entry roundabout so as to jointly minimize both the travel time and the energy consumption while providing speed-dependent safety guarant
The emergence of the connected and automated vehicle (CAV) technology enables numerous advanced applications in our transportation system, benefiting our daily travels in terms of safety, mobility, and sustainability. However, vehicular communication
Cooperative Adaptive Cruise Control (CACC) is an autonomous vehicle-following technology that allows groups of vehicles on the highway to form in tightly-coupled platoons. This is accomplished by exchanging inter-vehicle data through Vehicle-to-Vehic