ترغب بنشر مسار تعليمي؟ اضغط هنا

Risk Assessment for Connected Vehicles under Stealthy Attacks on Vehicle-to-Vehicle Networks

125   0   0.0 ( 0 )
 نشر من قبل Tianci Yang
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Cooperative Adaptive Cruise Control (CACC) is an autonomous vehicle-following technology that allows groups of vehicles on the highway to form in tightly-coupled platoons. This is accomplished by exchanging inter-vehicle data through Vehicle-to-Vehicle (V2V) wireless communication networks. CACC increases traffic throughput and safety, and decreases fuel consumption. However, the surge of vehicle connectivity has brought new security challenges as vehicular networks increasingly serve as new access points for adversaries trying to deteriorate the platooning performance or even cause collisions. In this manuscript, we propose a novel attack detection scheme that leverage real-time sensor/network data and physics-based mathematical models of vehicles in the platoon. Nevertheless, even the best detection scheme could lead to conservative detection results because of unavoidable modelling uncertainties, network effects (delays, quantization, communication dropouts), and noise. It is hard (often impossible) for any detector to distinguish between these different perturbation sources and actual attack signals. This enables adversaries to launch a range of attack strategies that can surpass the detection scheme by hiding within the system uncertainty. Here, we provide risk assessment tools (in terms of semidefinite programs) for Connected and Automated Vehicles (CAVs) to quantify the potential effect of attacks that remain hidden from the detector (referred here as emph{stealthy attacks}). A numerical case-study is presented to illustrate the effectiveness of our methods.



قيم البحث

اقرأ أيضاً

112 - Tianci Yang , Chen Lv 2021
By using various sensors to measure the surroundings and sharing local sensor information with the surrounding vehicles through wireless networks, connected and automated vehicles (CAVs) are expected to increase safety, efficiency, and capacity of ou r transportation systems. However, the increasing usage of sensors has also increased the vulnerability of CAVs to sensor faults and adversarial attacks. Anomalous sensor values resulting from malicious cyberattacks or faulty sensors may cause severe consequences or even fatalities. In this paper, we increase the resilience of CAVs to faults and attacks by using multiple sensors for measuring the same physical variable to create redundancy. We exploit this redundancy and propose a sensor fusion algorithm for providing a robust estimate of the correct sensor information with bounded errors independent of the attack signals, and for attack detection and isolation. The proposed sensor fusion framework is applicable to a large class of security-critical Cyber-Physical Systems (CPSs). To minimize the performance degradation resulting from the usage of estimation for control, we provide an $H_{infty}$ controller for CACC-equipped CAVs capable of stabilizing the closed-loop dynamics of each vehicle in the platoon while reducing the joint effect of estimation errors and communication channel noise on the tracking performance and string behavior of the vehicle platoon. Numerical examples are presented to illustrate the effectiveness of our methods.
Cooperative Adaptive Cruise Control (CACC) is a vehicular technology that allows groups of vehicles on the highway to form in closely-coupled automated platoons to increase highway capacity and safety, and decrease fuel consumption and CO2 emissions. The underlying mechanism behind CACC is the use of Vehicle-to-Vehicle (V2V) wireless communication networks to transmit acceleration commands to adjacent vehicles in the platoon. However, the use of V2V networks leads to increased vulnerabilities against faults and cyberattacks at the communication channels. Communication networks serve as new access points for malicious agents trying to deteriorate the platooning performance or even cause crashes. Here, we address the problem of increasing robustness of CACC schemes against cyberattacks by the use of multiple V2V networks and a data fusion algorithm. The idea is to transmit acceleration commands multiple times through different communication networks (channels) to create redundancy at the receiver side. We exploit this redundancy to obtain attack-free estimates of acceleration commands. To accomplish this, we propose a data-fusion algorithm that takes data from all channels, returns an estimate of the true acceleration command, and isolates compromised channels. Note, however, that using estimated data for control introduces uncertainty into the loop and thus decreases performance. To minimize performance degradation, we propose a robust $H_{infty}$ controller that reduces the joint effect of estimation errors and sensor/channel noise in the platooning performance (tracking performance and string stability). We present simulation results to illustrate the performance of our approach.
256 - Yujie Li , Sikai Chen , Runjia Du 2020
Emerging transportation technologies offer unprecedented opportunities to improve the efficiency of the transportation system from the perspectives of energy consumption, congestion, and emissions. One of these technologies is connected and autonomou s vehicles (CAVs). With the prospective duality of operations of CAVs and human driven vehicles in the same roadway space (also referred to as a mixed stream), CAVs are expected to address a variety of traffic problems particularly those that are either caused or exacerbated by the heterogeneous nature of human driving. In efforts to realize such specific benefits of CAVs in mixed-stream traffic, it is essential to understand and simulate the behavior of human drivers in such environments, and microscopic traffic flow (MTF) models can be used to carry out this task. By helping to comprehend the fundamental dynamics of traffic flow, MTF models serve as a powerful approach to assess the impacts of such flow in terms of safety, stability, and efficiency. In this paper, we seek to calibrate MTF models based on empirical trajectory data as basis of not only understanding traffic dynamics such as traffic instabilities, but ultimately using CAVs to mitigate stop-and-go wave propagation. The paper therefore duly considers the heterogeneity and uncertainty associated with human driving behavior in order to calibrate the dynamics of each HDV. Also, the paper designs the CAV controllers based on the microscopic HDV models that are calibrated in real time. The data for the calibration is from the Next Generation SIMulation (NGSIM) trajectory datasets. The results are encouraging, as they indicate the efficacy of the designed controller to significantly improve not only the stability of the mixed traffic stream but also the safety of both CAVs and HDVs in the traffic stream.
This paper presents a cooperative vehicle sorting strategy that seeks to optimally sort connected and automated vehicles (CAVs) in a multi-lane platoon to reach an ideally organized platoon. In the proposed method, a CAV platoon is firstly discretize d into a grid system, where a CAV moves from one cell to another in the discrete time-space domain. Then, the cooperative sorting problem is modeled as a path-finding problem in the graphic domain. The problem is solved by the deterministic Astar algorithm with a stepwise strategy, where only one vehicle can move within a movement step. The resultant shortest path is further optimized with an integer linear programming algorithm to minimize the sorting time by allowing multiple movements within a step. To improve the algorithm running time and address multiple shortest paths, a distributed stochastic Astar algorithm (DSA) is developed by introducing random disturbances to the edge costs to break uniform paths (with equal path cost). Numerical experiments are conducted to demonstrate the effectiveness of the proposed DSA method. The results report shorter sorting time and significantly improved algorithm running time due to the use of DSA. In addition, we find that the optimization performance can be further improved by increasing the number of processes in the distributed computing system.
In this study, we propose a rotation-based connected automated vehicle (CAV) distributed cooperative control strategy for an on-ramp merging scenario. By assuming the mainline and ramp line are straight, we firstly design a virtual rotation approach that transfers the merging problem to a virtual car following (CF) problem to reduce the complexity and dimension of the cooperative CAVs merging control. Based on this concept, a multiple-predecessor virtual CF model and a unidirectional multi-leader communication topology are developed to determine the longitudinal behavior of each CAV. Specifically, we exploit a distributed feedback and feedforward longitudinal controller in preparation for actively generating gaps for merging CAVs, reducing the voids caused by merging, and ensuring safety and traffic efficiency during the process. To ensure the disturbance attenuation property of this system, practical string stability is mathematically proved for the virtual CF controllers to prohibit the traffic oscillation amplification through the traffic stream. Moreover, as a provision for extending the virtual CF application scenarios of any curvy ramp geometry, we utilize a curvilinear coordinate to model the two-dimensional merging control, and further design a local lateral controller based on an extended linear-quadratic regulator to regulate the position deviation and angular deviation of the lane centerlines. For the purpose of systematically evaluating the control performance of the proposed methods, numerical simulation experiments are conducted. As the results indicate, the proposed controllers can actively reduce the void and meanwhile guarantee the damping of traffic oscillations in the merging control area.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا