ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Decoherence

475   0   0.0 ( 0 )
 نشر من قبل Maximilian Schlosshauer
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum decoherence plays a pivotal role in the dynamical description of the quantum-to-classical transition and is the main impediment to the realization of devices for quantum information processing. This paper gives an overview of the theory and experimental observation of the decoherence mechanism. We introduce the essential concepts and the mathematical formalism of decoherence, focusing on the picture of the decoherence process as a continuous monitoring of a quantum system by its environment. We review several classes of decoherence models and discuss the description of the decoherence dynamics in terms of master equations. We survey methods for avoiding and mitigating decoherence and give an overview of several experiments that have studied decoherence processes. We also comment on the role decoherence may play in interpretations of quantum mechanics and in addressing foundational questions.



قيم البحث

اقرأ أيضاً

We study decoherence in a simple quantum mechanical model using two approaches. Firstly, we follow the conventional approach to decoherence where one is interested in solving the reduced density matrix from the perturbative master equation. Secondly, we consider our novel correlator approach to decoherence where entropy is generated by neglecting observationally inaccessible correlators. We show that both methods can accurately predict decoherence time scales. However, the perturbative master equation generically suffers from instabilities which prevents us to reliably calculate the systems total entropy increase. We also discuss the relevance of the results in our quantum mechanical model for interacting field theories.
The dynamical evolution of a quantum register of arbitrary length coupled to an environment of arbitrary coherence length is predicted within a relevant model of decoherence. The results are reported for quantum bits (qubits) coupling individually to different environments (`independent decoherence) and qubits interacting collectively with the same reservoir (`collective decoherence). In both cases, explicit decoherence functions are derived for any number of qubits. The decay of the coherences of the register is shown to strongly depend on the input states: we show that this sensitivity is a characteristic of $both$ types of coupling (collective and independent) and not only of the collective coupling, as has been reported previously. A non-trivial behaviour (recoherence) is found in the decay of the off-diagonal elements of the reduced density matrix in the specific situation of independent decoherence. Our results lead to the identification of decoherence-free states in the collective decoherence limit. These states belong to subspaces of the systems Hilbert space that do not get entangled with the environment, making them ideal elements for the engineering of ``noiseless quantum codes. We also discuss the relations between decoherence of the quantum register and computational complexity based on the new dynamical results obtained for the register density matrix.
An examination of the concept of using classical degrees of freedom to drive the evolution of quantum computers is given. Specifically, when externally generated, coherent states of the electromagnetic field are used to drive transitions within the q ubit system, a decoherence results due to the back reaction from the qubits onto the quantum field. We derive an expression for the decoherence rate for two cases, that of the single-qubit Walsh-Hadamard transform, and for an implementation of the controlled-NOT gate. We examine the impact of this decoherence mechanism on Grovers search algorithm, and on the proposals for use of error-correcting codes in quantum computation.
141 - Virginia DAuria 2011
The interaction of a quantum system with the environment leads to the so-called quantum decoherence. Beyond its fundamental significance, the understanding and the possible control of this dynamics in various scenarios is a key element for mastering quantum information processing. Here we report the quantitative probing of what can be called the quantum decoherence of detectors, a process reminiscent of the decoherence of quantum states in the presence of coupling with a reservoir. We demonstrate how the quantum features of two single-photon counters vanish under the influence of a noisy environment. We thereby experimentally witness the transition between the full-quantum operation of the measurement device to the semi-classical regime, described by a positive Wigner function. The exact border between these two regimes is explicitely determined and measured experimentally.
The high resilience to de-coherence shown by a recently discovered Macroscopic Quantum Superposition (MQS) involving a number of photons in excess of 5 x 10^4 motivates the present theoretical and numerical investigation. The results are placed in cl ose comparison with the properties of the well known MQS based on |alpha> states. The very critical decoherence properties of the latter MQS are found to be fully accounted for, in a direct a simple way, by a unique universal function: indeed a new property of the quantum coherent states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا