ﻻ يوجد ملخص باللغة العربية
The interaction of a quantum system with the environment leads to the so-called quantum decoherence. Beyond its fundamental significance, the understanding and the possible control of this dynamics in various scenarios is a key element for mastering quantum information processing. Here we report the quantitative probing of what can be called the quantum decoherence of detectors, a process reminiscent of the decoherence of quantum states in the presence of coupling with a reservoir. We demonstrate how the quantum features of two single-photon counters vanish under the influence of a noisy environment. We thereby experimentally witness the transition between the full-quantum operation of the measurement device to the semi-classical regime, described by a positive Wigner function. The exact border between these two regimes is explicitely determined and measured experimentally.
Quantum walks have a host of applications, ranging from quantum computing to the simulation of biological systems. We present an intrinsically stable, deterministic implementation of discrete quantum walks with single photons in space. The number of
The long-lived, efficient storage and retrieval of a qubit encoded on a photon is an important ingredient for future quantum networks. Although systems with intrinsically long coherence times have been demonstrated, the combination with an efficient
We design an effect protocol for protecting the single-photon entanglement from photon loss and decoherence. The protocol only requires some auxiliary single photons and the linear optical elements. By operating the protocol, the photon loss can be e
Solid-state emitters are excellent candidates for developing integrated sources of single photons. Yet, phonons degrade the photon indistinguishability both through pure dephasing of the zero-phonon line and through phonon-assisted emission. Here, we
We show via an explicit example that quantum anomalies can lead to decoherence of a single quantum qubit through phase relaxation. The anomaly causes the Hamiltonian to develop a non-self-adjoint piece due to the non-invariance of the domain of the H