ﻻ يوجد ملخص باللغة العربية
Feeding external data to a blockchain, a.k.a. data feed, is an essential task to enable blockchain interoperability and support emerging cross-domain applications, notably stablecoins. Given the data-intensive feeds in real life (e.g., high-frequency price updates) and the high cost in using blockchain, namely Gas, it is imperative to reduce the Gas cost of data feeds. Motivated by the constant-changing workloads in finance and other applications, this work focuses on designing a dynamic, workload-aware approach for cost effectiveness in Gas. This design space is understudied in the existing blockchain research which has so far focused on static data placement. This work presents GRuB, a cost-effective data feed that dynamically replicates data between the blockchain and an off-chain cloud storage. GRuBs data replication is workload-adaptive by monitoring the current workload and making online decisions w.r.t. data replication. A series of online algorithms are proposed that achieve the bounded worst-case cost in blockchains Gas. GRuB runs the decision-making components on the untrusted cloud off-chain for lower Gas costs, and employs a security protocol to authenticate the data transferred between the blockchain and cloud. The overall GRuB system can autonomously achieve low Gas costs with changing workloads. We built a GRuB prototype functional with Ethereum and Google LevelDB, and supported real applications in stablecoins. Under real workloads collected from the Ethereum contract-call history and mixed workloads of YCSB, we systematically evaluate GRuBs cost which shows a saving of Gas by 10% ~ 74%, with comparison to the baselines of static data-placement.
Contemporary IoT environments, such as smart buildings, require end-users to trust data-capturing rules published by the systems. There are several reasons why such a trust is misplaced -- IoT systems may violate the rules deliberately or IoT devices
Privacy preservation is a big concern for various sectors. To protect individual user data, one emerging technology is differential privacy. However, it still has limitations for datasets with frequent queries, such as the fast accumulation of privac
The growing adoption of IoT devices in our daily life is engendering a data deluge, mostly private information that needs careful maintenance and secure storage system to ensure data integrity and protection. Also, the prodigious IoT ecosystem has pr
Differential privacy protects an individuals privacy by perturbing data on an aggregated level (DP) or individual level (LDP). We report four online human-subject experiments investigating the effects of using different approaches to communicate diff
The advancement in the healthcare sector is entering into a new era in the form of Health 4.0. The integration of innovative technologies like Cyber-Physical Systems (CPS), Big Data, Cloud Computing, Machine Learning, and Blockchain with Healthcare s