ترغب بنشر مسار تعليمي؟ اضغط هنا

Security of Healthcare Data Using Blockchains: A Survey

90   0   0.0 ( 0 )
 نشر من قبل Mayank Pandey
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The advancement in the healthcare sector is entering into a new era in the form of Health 4.0. The integration of innovative technologies like Cyber-Physical Systems (CPS), Big Data, Cloud Computing, Machine Learning, and Blockchain with Healthcare services has led to improved performance and efficiency through data-based learning and interconnection of systems. On the other hand, it has also increased complexities and has brought its own share of vulnerabilities due to the heavy influx, sharing, and storage of healthcare data. The protection of the same from cyber-attacks along with privacy preservation through authenticated access is one of the significant challenges for the healthcare sector. For this purpose, the use of blockchain-based networks can lead to a considerable reduction in the vulnerabilities of the healthcare systems and secure their data. This chapter explores blockchains role in strengthening healthcare data security by answering the questions related to what data use, when we need, why we need, who needs, and how state-of-the-art techniques use blockchains to secure healthcare data. As a case study, we also explore and analyze the state-of-the-art implementations for blockchain in healthcare data security for the COVID-19 pandemic. In order to provide a path to future research directions, we identify and discuss the technical limitations and regulatory challenges associated with blockchain-based healthcare data security implementation.



قيم البحث

اقرأ أيضاً

124 - Rui Zhang , Rui Xue , Ling Liu 2021
Healthcare blockchains provide an innovative way to store healthcare information, execute healthcare transactions, and build trust for healthcare data sharing and data integration in a decentralized open healthcare network environment. Although the h ealthcare blockchain technology has attracted broad interests and attention in industry, government and academia, the security and privacy concerns remain the focus of debate when deploying blockchains for information sharing in the healthcare sector from business operation to research collaboration. This paper focuses on the security and privacy requirements for medical data sharing using blockchain, and provides a comprehensive analysis of the security and privacy risks and requirements, accompanied by technical solution techniques and strategies. First, we discuss the security and privacy requirements and attributes required for electronic medical data sharing by deploying the healthcare blockchain. Second, we categorize existing efforts into three reference blockchain usage scenarios for electronic medical data sharing, and discuss the technologies for implementing these security and privacy properties in the three categories of usage scenarios for healthcare blockchain, such as anonymous signatures, attribute-based encryption, zero-knowledge proofs, verification techniques for smart contract security. Finally, we discuss other potential blockchain application scenarios in healthcare sector. We conjecture that this survey will help healthcare professionals, decision makers, and healthcare service developers to gain technical and intuitive insights into the security and privacy of healthcare blockchains in terms of concepts, risks, requirements, development and deployment technologies and systems.
This paper embodies the usage of Big Data in Healthcare. It is important to note that big data in terms of Architecture and implementation might be or has already or will continue to assist the continuous growth in the field of healthcare. The main i mportant aspects of this study are the general importance of big data in healthcare, the positives big data will help tackle and enhance in this field and not to also forget to mention the tremendous downside big data has on healthcare that is still needed to improve or putting extensive research on. We believe there is still a long way in which institutions and individuals understand the hidden truth about big data. We have highlighted the various ways one could be confidently relied on big data and on the other hand highlighted the weighted importance of big problem big data and expected solutions.
Due to their interesting features, blockchains have become popular in recent years. They are full-stack systems where security is a critical factor for their success. The main focus of this work is to systematize knowledge about security and privacy issues of blockchains. To this end, we propose a security reference architecture based on models that demonstrate the stacked hierarchy of various threats (similar to the ISO/OSI hierarchy) as well as threat-risk assessment using ISO/IEC 15408. In contrast to the previous surveys, we focus on the categorization of security incidents based on their origins and using the proposed architecture we present existing prevention and mitigation techniques. The scope of our work mainly covers aspects related to the decentralized nature of blockchains, while we mention common operational security issues and countermeasures only tangentially.
The emerging blockchain technology supports decentralized computing paradigm shift and is a rapidly approaching phenomenon. While blockchain is thought primarily as the basis of Bitcoin, its application has grown far beyond cryptocurrencies due to th e introduction of smart contracts. Smart contracts are self-enforcing pieces of software, which reside and run over a hosting blockchain. Using blockchain-based smart contracts for secure and transparent management to govern interactions (authentication, connection, and transaction) in Internet-enabled environments, mostly IoT, is a niche area of research and practice. However, writing trustworthy and safe smart contracts can be tremendously challenging because of the complicated semantics of underlying domain-specific languages and its testability. There have been high-profile incidents that indicate blockchain smart contracts could contain various code-security vulnerabilities, instigating financial harms. When it involves security of smart contracts, developers embracing the ability to write the contracts should be capable of testing their code, for diagnosing security vulnerabilities, before deploying them to the immutable environments on blockchains. However, there are only a handful of security testing tools for smart contracts. This implies that the existing research on automatic smart contracts security testing is not adequate and remains in a very stage of infancy. With a specific goal to more readily realize the application of blockchain smart contracts in security and privacy, we should first understand their vulnerabilities before widespread implementation. Accordingly, the goal of this paper is to carry out a far-reaching experimental assessment of current static smart contracts security testing tools, for the most widely used blockchain, the Ethereum and its domain-specific programming language, Solidity to provide the first...
The Internet-of-Things (IoT) is an emerging and cognitive technology which connects a massive number of smart physical devices with virtual objects operating in diverse platforms through the internet. IoT is increasingly being implemented in distribu ted settings, making footprints in almost every sector of our life. Unfortunately, for healthcare systems, the entities connected to the IoT networks are exposed to an unprecedented level of security threats. Relying on a huge volume of sensitive and personal data, IoT healthcare systems are facing unique challenges in protecting data security and privacy. Although blockchain has posed to be the solution in this scenario thanks to its inherent distributed ledger technology (DLT), it suffers from major setbacks of increasing storage and computation requirements with the network size. This paper proposes a holochain-based security and privacy-preserving framework for IoT healthcare systems that overcomes these challenges and is particularly suited for resource constrained IoT scenarios. The performance and thorough security analyses demonstrate that a holochain-based IoT healthcare system is significantly better compared to blockchain and other existing systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا