ﻻ يوجد ملخص باللغة العربية
In theories such as teleparallel gravity and its extensions, the frame basis replaces the metric tensor as the primary object of study. A choice of coordinate system, frame basis and spin-connection must be made to obtain a solution from the field equations of a given teleparallel gravity theory. It is worthwhile to express solutions in an invariant manner in terms of torsion invariants to distinguish between different solutions. In this paper we discuss the symmetries of teleparallel gravity theories, describe the classification of the torsion tensor and its covariant derivative and define scalar invariants in terms of the torsion. In particular, we propose a modification of the Cartan-Karlhede algorithm for geometries with torsion (and no curvature or nonmetricity). The algorithm determines the dimension of the symmetry group for a solution and suggests an alternative frame-based approach to calculating symmetries. We prove that the only maximally symmetric solution to any theory of gravitation admitting a non-zero torsion tensor is Minkowski space. As an illustration we apply the algorithm to six particular exact teleparallel geometries. From these examples we notice that the symmetry group of the solutions of a teleparallel gravity theory is potentially smaller than their metric-based analogues in General Relativity.
Symmetric Teleparallel Gravity is an exceptional theory of gravity that is consistent with the vanishing affine connection. This theory is an alternative and a simpler geometrical formulation of general relativity, where the non-metricity $Q$ drives
We study teleparallel gravity in the emph{original} Kaluza-Klein (KK) scenario. Our calculation of the KK reduction of teleparallel gravity indicates that the 5-dimensional torsion scalar $^{(5)}T$ generates the non-Brans-Dicke type effective Lagrang
Teleparallel gravity has significantly increased in popularity in recent decades, bringing attention to Einsteins other theory of gravity. In this Review, we relate this form of geometry to the broader metric-affine approach to forming gravitational
In the context of extended Teleparallel gravity theories with a 3+1 dimensions Gauss-Bonnet analog term, we address the possibility of these theories reproducing several well-known cosmological solutions. In particular when applied to a Friedmann-Lem
We consider three-dimensional gravity based on torsion. Specifically, we consider an extension of the so-called Teleparallel Equivalent of General Relativity in the presence of a scalar field with a self-interacting potential, where the scalar field