ﻻ يوجد ملخص باللغة العربية
We study teleparallel gravity in the emph{original} Kaluza-Klein (KK) scenario. Our calculation of the KK reduction of teleparallel gravity indicates that the 5-dimensional torsion scalar $^{(5)}T$ generates the non-Brans-Dicke type effective Lagrangian in 4-dimension due to an additional coupling between the derivative of the scalar field and torsion, but the result is equivalent to that in general relativity. We also discuss the cosmological behavior in the FLRW universe based on the effective teleparallel gravity.
We study the extensions of teleparallism in the Kaluza-Klein (KK) scenario by writing the analogous form to the torsion scalar $T_{text{NGR}}$ in terms of the corresponding antisymmetric tensors, given by $T_{text{NGR}} = a,T_{ijk} , T^{ijk} + b,T_{i
Teleparallel gravity has significantly increased in popularity in recent decades, bringing attention to Einsteins other theory of gravity. In this Review, we relate this form of geometry to the broader metric-affine approach to forming gravitational
The exploration of teleparallel gravity has been done from a dynamical systems point of view in order to be tested against the cosmological evolution currently observed. So far, the proposed autonomous systems have been restrictive over a constant dy
We discuss a semiclassical treatment to inflationary models from Kaluza-Klein theory without the cylinder condition. We conclude that the evolution of the early universe could be described by a geodesic trayectory of a cosmological 5D metric here pro
The standard topological censorship theorems require asymptotic hypotheses which are too restrictive for several situations of interest. In this paper we prove a version of topological censorship under significantly weaker conditions, compatible e.g.