ﻻ يوجد ملخص باللغة العربية
Motivated by the growing popularity of smart TVs, we present a large-scale measurement study of smart TVs by collecting and analyzing their network traffic from two different vantage points. First, we analyze aggregate network traffic of smart TVs in-the-wild, collected from residential gateways of tens of homes and several different smart TV platforms, including Apple, Samsung, Roku, and Chromecast. In addition to accessing video streaming and cloud services, we find that smart TVs frequently connect to well-known as well as platform-specific advertising and tracking services (ATS). Second, we instrument Roku and Amazon Fire TV, two popular smart TV platforms, by setting up a controlled testbed to systematically exercise the top-1000 apps on each platform, and analyze their network traffic at the granularity of the individual apps. We again find that smart TV apps connect to a wide range of ATS, and that the key players of the ATS ecosystems of the two platforms are different from each other and from that of the mobile platform. Third, we evaluate the (in)effectiveness of state-of-the-art DNS-based blocklists in filtering advertising and tracking traffic for smart TVs. We find that personally identifiable information (PII) is exfiltrated to platform-related Internet endpoints and third parties, and that blocklists are generally better at preventing exposure of PII to third parties than to platform-related endpoints. Our work demonstrates the segmentation of the smart TV ATS ecosystem across platforms and its differences from the mobile ATS ecosystem, thus motivating the need for designing privacy-enhancing tools specifically for each smart TV platform.
The TV is dead motto of just a few years ago has been replaced by the prospect of Internet Protocol (IP) television experiences over converged networks to become one of the great technology opportunities in the next few years. As an introduction to t
Age of Information (AoI) has gained importance as a Key Performance Indicator (KPI) for characterizing the freshness of information in information-update systems and time-critical applications. Recent theoretical research on the topic has generated s
Low-Power Wide-Area Network (LPWAN) is an enabling Internet-of-Things (IoT) technology that supports long-range, low-power, and low-cost connectivity to numerous devices. To avoid the crowd in the limited ISM band (where most LPWANs operate) and cost
Intelligence services are playing an increasingly important role in the operation of our society. Exploring the evolution mechanism, boundaries and challenges of service ecosystem is essential to our ability to realize smart society, reap its benefit
The fleet management of mobile working machines with the help of connectivity can increase safety and productivity. Although in our previous study, we proposed a solution to use IEEE 802.11p to achieve the fleet management of construction machines, t