ﻻ يوجد ملخص باللغة العربية
Recent work has shown that Milky Way-mass galaxies display an incredible range of stellar halo properties, yet the origin of this diversity is unclear. The nearby galaxy M81 $-$ currently interacting with M82 and NGC 3077 $-$ sheds unique light on this problem. We present a Subaru Hyper Suprime-Cam survey of the resolved stellar populations around M81, revealing M81s stellar halo in never-before-seen detail. We resolve the halo to unprecedented $V$-band equivalent surface brightnesses of 33 mag arcsec$^{-2}$, and produce the first-ever global stellar mass density map for a Milky Way-mass stellar halo outside of the Local Group. Using the minor axis, we confirm M81s halo as one of the lowest mass and metal-poorest known ($M_{star} simeq 1.16{times}10^9 M_{odot}$, [Fe/H] $simeq {-}1.2$) $-$ indicating a relatively quiet prior accretion history. Yet, our global halo census finds that tidally unbound material from M82 and NGC 3077 provides a substantial infusion of metal-rich material ($M_{star} simeq 5.4{times}10^8$ $M_{odot}$, [Fe/H] $simeq {-}$0.9). We further show that, following the accretion of its massive satellite M82 (and the LMC-like NGC 3077), M81 will host one of the most massive and metal-rich stellar halos in the nearby universe. Thus, the saga of M81: following a passive history, M81s merger with M82 will completely transform its halo from a low-mass, anemic halo rivaling the MW, to a metal-rich behemoth rivaled only by systems such as M31. This dramatic transformation indicates that the observed diversity in stellar halo properties is primarily driven by diversity in the largest mergers these galaxies have experienced.
Using the MegaCam imager on the Canada-France-Hawaii Telescope, we have resolved individual stars in the outskirts of the nearby large spiral galaxy M81 (NGC 3031) well below the tip of the red giant branch of metal-poor stellar populations over 60 k
We present the first results of a wide-field mapping survey of the M81 group conducted with Hyper Suprime-Cam on the Subaru Telescope. Our deep photometry reaches $sim2$ magnitudes below the tip of the red giant branch (RGB) and reveals the spatial d
The Central Molecular Zone (CMZ), a $sim$200 pc sized region around the Galactic Centre, is peculiar in that it shows a star formation rate (SFR) that is suppressed with respect to the available dense gas. To study the SFR in the CMZ, young stellar o
In this paper, we present a comprehensive analysis of star-forming galaxies (SFGs) at intermediate redshifts (z~1). We combine the ultra-deep optical spectro-photometric data from the Survey for High-z Absorption Red and Dead Sources (SHARDS) with de
We have mapped cold atomic gas in 21cm line HI self-absorption (HISA) at arcminute resolution over more than 90% of the Milky Ways disk. To probe the formation of H2 clouds, we have compared our HISA distribution with CO J=1-0 line emission. Few HISA