ترغب بنشر مسار تعليمي؟ اضغط هنا

A panoramic view of M81: New stellar systems in the debris field

127   0   0.0 ( 0 )
 نشر من قبل Mustapha Mouhcine
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the MegaCam imager on the Canada-France-Hawaii Telescope, we have resolved individual stars in the outskirts of the nearby large spiral galaxy M81 (NGC 3031) well below the tip of the red giant branch of metal-poor stellar populations over 60 kpc * 58 kpc. In this paper, we report the discovery of new young stellar systems in the outskirts of M81. The most prominent feature is a chain of clumps of young stars distributed along the extended southern HI tidal arm connecting M 81 and NGC 3077. The colour-magnitude diagrams of these stellar systems show plumes of bright main sequence stars and red supergiant stars, indicating extended events of star formation. The main sequence turn-offs of the youngest stars in the systems are consistent with ages of ~40 Myr. The newly reported stellar systems show strong similarities with other known young stellar systems in the debris field around M81, with their properties best explained by these systems being of tidal origin.



قيم البحث

اقرأ أيضاً

Recent work has shown that Milky Way-mass galaxies display an incredible range of stellar halo properties, yet the origin of this diversity is unclear. The nearby galaxy M81 $-$ currently interacting with M82 and NGC 3077 $-$ sheds unique light on th is problem. We present a Subaru Hyper Suprime-Cam survey of the resolved stellar populations around M81, revealing M81s stellar halo in never-before-seen detail. We resolve the halo to unprecedented $V$-band equivalent surface brightnesses of 33 mag arcsec$^{-2}$, and produce the first-ever global stellar mass density map for a Milky Way-mass stellar halo outside of the Local Group. Using the minor axis, we confirm M81s halo as one of the lowest mass and metal-poorest known ($M_{star} simeq 1.16{times}10^9 M_{odot}$, [Fe/H] $simeq {-}1.2$) $-$ indicating a relatively quiet prior accretion history. Yet, our global halo census finds that tidally unbound material from M82 and NGC 3077 provides a substantial infusion of metal-rich material ($M_{star} simeq 5.4{times}10^8$ $M_{odot}$, [Fe/H] $simeq {-}$0.9). We further show that, following the accretion of its massive satellite M82 (and the LMC-like NGC 3077), M81 will host one of the most massive and metal-rich stellar halos in the nearby universe. Thus, the saga of M81: following a passive history, M81s merger with M82 will completely transform its halo from a low-mass, anemic halo rivaling the MW, to a metal-rich behemoth rivaled only by systems such as M31. This dramatic transformation indicates that the observed diversity in stellar halo properties is primarily driven by diversity in the largest mergers these galaxies have experienced.
Recent panoramic observations of the dominant spiral galaxies of the Local Group have revolutionized our view of how these galaxies assemble their mass. However, it remains completely unclear whether the properties of the outer regions of the Local G roup large spirals are typical. Here, we present the first panoramic view of a spiral galaxy beyond the Local Group, based on the largest, contiguous, ground-based imaging survey to date resolving the stellar halo of the nearest prime analogue of the Milky Way, NGC 891 (D~10 Mpc). The low surface brightness outskirts of this galaxy are populated by multiple, coherent, and vast substructures over the 90kpc * 90kpc extent of the survey. These include a giant stream, the first to be resolved into stars beyond the Local Group using ground-based facilities, that loops around the parent galaxy up to distances of ~50kpc. The bulge and the disk of the galaxy are found to be surrounded by a previously undetected large, flat and thick cocoon-like stellar structure at vertical and radial distances of up to ~15kpc and ~40kpc respectively.
We use Hyper Suprime-Cam on the Subaru Telescope to investigate the structural and photometric properties of early-type dwarf galaxies and young stellar systems at the center of the M81 Group. We have mapped resolved stars to $sim2$ magnitudes below the tip of the red giant branch over almost 6.5 square degrees, corresponding to a projected area of $160times160 rm{kpc}$ at the distance of M81. The resulting stellar catalogue enables a homogeneous analysis of the member galaxies with unprecedented sensitivity to low surface brightness emission. The radial profiles of the dwarf galaxies are well-described by Sersic and King profiles, and show no obvious signatures of tidal disruption. The measured radii for most of these systems are larger than the existing literature values and we find the total luminosity of IKN ($rm{M_{V,0}}=-14.29$) to be almost 3 magnitudes brighter than previously-thought. We identify new dwarf satellite candidates, d1006+69 and d1009+68, which we estimate to lie at a distance of $4.3pm0.2$ Mpc and $3.5pm0.5$ Mpc. With $rm{M_{V,0}}=-8.91pm0.40$ and $rm{[M/H]}=-1.83pm0.28$, d1006+69 is one of the faintest and most metal-poor dwarf satellites currently-known in the M81 Group. The luminosity functions of young stellar systems in the outlying tidal HI debris imply continuous star formation in the recent past and the existence of populations as young as 30 Myr old. We find no evidence for old RGB stars coincident with the young MS/cHeB stars which define these objects, supporting the idea that they are genuinely new stellar systems resulting from triggered star formation in gaseous tidal debris.
We present the first results of a wide-field mapping survey of the M81 group conducted with Hyper Suprime-Cam on the Subaru Telescope. Our deep photometry reaches $sim2$ magnitudes below the tip of the red giant branch (RGB) and reveals the spatial d istribution of both old and young stars over an area of $sim 100times115$ kpc at the distance of M81. The young stars ($sim30-160$ Myr old) closely follow the neutral hydrogen distribution and can be found in a stellar stream between M81 and NGC,3077 and in numerous outlying stellar associations, including the known concentrations of Arps Loop, Holmberg,IX, an arc in the halo of M82, BK3N, and the Garland. Many of these groupings do not have counterparts in the RGB maps, suggesting they may be genuinely young systems. Our survey also reveals for the first time the very extended ($geq 2times rm{R_{25}}$) halos of RGB stars around M81, M82 and NGC,3077, as well as faint tidal streams that link these systems. The halos of M82 and NGC,3077 exhibit highly disturbed morphologies, presumably a consequence of the recent gravitational encounter and their ongoing disruption. While the halos of M81, NGC,3077 and the inner halo of M82 have the similar $(g-i)_{0}$ colors, the outer halo of M82 is significantly bluer indicating it is more metal-poor. Remarkably, our deep panoramic view of the M81 group demonstrates that the complexity long-known to be present in HI is equally matched in the low surface brightness stellar component.
We use Herschel Space Observatory data to place observational constraints on the peak and Rayleigh-Jeans slope of dust emission observed at 70-500 microns in the nearby spiral galaxy M81. We find that the ratios of wave bands between 160 and 500 micr ons are primarily dependent on radius but that the ratio of 70 to 160 micron emission shows no clear dependence on surface brightness or radius. These results along with analyses of the spectral energy distributions imply that the 160-500 micron emission traces 15-30 K dust heated by evolved stars in the bulge and disc whereas the 70 micron emission includes dust heated by the active galactic nucleus and young stars in star forming regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا