ترغب بنشر مسار تعليمي؟ اضغط هنا

On Lie Bialgebroid Crossed Modules

74   0   0.0 ( 0 )
 نشر من قبل Yu Qiao
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study Lie bialgebroid crossed modules which are pairs of Lie algebroid crossed modules in duality that canonically give rise to Lie bialgebroids. A one-one correspondence between such Lie bialgebroid crossed modules and co-quadratic Manin triples $(K,P,Q)$ is established, where $K$ is a co-quadratic Lie algebroid and $(P,Q)$ is a pair of transverse Dirac structures in $K$.



قيم البحث

اقرأ أيضاً

118 - Jiefeng Liu 2020
We study (quasi-)twilled pre-Lie algebras and the associated $L_infty$-algebras and differential graded Lie algebras. Then we show that certain twisting transformations on (quasi-)twilled pre-Lie algbras can be characterized by the solutions of Maure r-Cartan equations of the associated differential graded Lie algebras ($L_infty$-algebras). Furthermore, we show that $mathcal{O}$-operators and twisted $mathcal{O}$-operators are solutions of the Maurer-Cartan equations. As applications, we study (quasi-)pre-Lie bialgebras using the associated differential graded Lie algebras ($L_infty$-algebras) and the twisting theory of (quasi-)twilled pre-Lie algebras. In particular, we give a construction of quasi-pre-Lie bialgebras using symplectic Lie algebras, which is parallel to that a Cartan $3$-form on a semi-simple Lie algebra gives a quasi-Lie bialgebra.
We propose a new method to compute connection matrices of quantum Knizhnik-Zamolodchikov equations associated to integrable vertex models with super algebra and Hecke algebra symmetries. The scheme relies on decomposing the underlying spin representa tion of the affine Hecke algebra in principal series modules and invoking the known solution of the connection problem for quantum affine Knizhnik-Zamolodchikov equations associated to principal series modules. We apply the method to the spin representation underlying the $mathcal{U}_qbigl(hat{mathfrak{gl}}(2|1)bigr)$ Perk-Schultz model. We show that the corresponding connection matrices are described by an elliptic solution of a supersymmetric version of the dynamical quantum Yang-Baxter equation with spectral parameter.
We derive explicit formulas for solutions of the Bethe Ansatz equations of the Gaudin model associated to the tensor product of one arbitrary finite-dimensional irreducible module and one vector representation for all simple Lie algebras of classical type. We use this result to show that the Bethe Ansatz is complete in any tensor product where all but one factor are vector representations and the evaluation parameters are generic. We also show that except for the type D, the joint spectrum of Gaudin Hamiltonians in such tensor products is simple.
99 - V.K. Kharchenko 2001
It is shown that the dimension of the multilinear quantum Lie operations space is either equal to zero or included between $(n-2)!$ and $(n-1)!.$ The lower bound is achieved if the intersection of all conforming subsets is nonempty, while the upper b ound does if all subsets are conforming. We show that almost always the quantum Lie operations space is generated by symmetric ones. In particular, the space of all general $n$-linear quantum Lie operations does. All possible exceptions are described.
76 - Ruipu Bai , Yue Ma , Pei Liu 2019
In this paper, we define the induced modules of Lie algebra ad$(B)$ associated with a 3-Lie algebra $B$-module, and study the relation between 3-Lie algebra $A_{omega}^{delta}$-modules and induced modules of inner derivation algebra ad$(A_{omega}^{de lta})$. We construct two infinite dimensional intermediate series modules of 3-Lie algebra $A_{omega}^{delta}$, and two infinite dimensional modules $(V, psi_{lambdamu})$ and $(V, phi_{mu})$ of the Lie algebra ad$(A_{omega}^{delta})$, and prove that only $(V, psi_{lambda0})$ and $(V, psi_{lambda1})$ are induced modules.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا