ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Gaudin model associated to Lie algebras of classical types

71   0   0.0 ( 0 )
 نشر من قبل Kang Lu
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive explicit formulas for solutions of the Bethe Ansatz equations of the Gaudin model associated to the tensor product of one arbitrary finite-dimensional irreducible module and one vector representation for all simple Lie algebras of classical type. We use this result to show that the Bethe Ansatz is complete in any tensor product where all but one factor are vector representations and the evaluation parameters are generic. We also show that except for the type D, the joint spectrum of Gaudin Hamiltonians in such tensor products is simple.



قيم البحث

اقرأ أيضاً

118 - Jiefeng Liu 2020
We study (quasi-)twilled pre-Lie algebras and the associated $L_infty$-algebras and differential graded Lie algebras. Then we show that certain twisting transformations on (quasi-)twilled pre-Lie algbras can be characterized by the solutions of Maure r-Cartan equations of the associated differential graded Lie algebras ($L_infty$-algebras). Furthermore, we show that $mathcal{O}$-operators and twisted $mathcal{O}$-operators are solutions of the Maurer-Cartan equations. As applications, we study (quasi-)pre-Lie bialgebras using the associated differential graded Lie algebras ($L_infty$-algebras) and the twisting theory of (quasi-)twilled pre-Lie algebras. In particular, we give a construction of quasi-pre-Lie bialgebras using symplectic Lie algebras, which is parallel to that a Cartan $3$-form on a semi-simple Lie algebra gives a quasi-Lie bialgebra.
200 - Kang Lu , E. Mukhin 2017
We derive a number of results related to the Gaudin model associated to the simple Lie algebra of type G$_2$. We compute explicit formulas for solutions of the Bethe ansatz equations associated to the tensor product of an arbitrary finite-dimension al irreducible module and the vector representation. We use this result to show that the Bethe ansatz is complete in any tensor product where all but one factor are vector representations and the evaluation parameters are generic. We show that the points of the spectrum of the Gaudin model in type G$_2$ are in a bijective correspondence with self-self-dual spaces of polynomials. We study the set of all self-self-dual spaces - the self-self-dual Grassmannian. We establish a stratification of the self-self-dual Grassmannian with the strata labeled by unordered sets of dominant integral weights and unordered sets of nonnegative integers, satisfying certain explicit conditions. We describe closures of the strata in terms of representation theory.
In this article we develop an approach to deformations of the Witt and Virasoro algebras based on $sigma$-derivations. We show that $sigma$-twisted Jacobi type identity holds for generators of such deformations. For the $sigma$-twisted generalization of Lie algebras modeled by this construction, we develop a theory of central extensions. We show that our approach can be used to construct new deformations of Lie algebras and their central extensions, which in particular include naturally the $q$-deformations of the Witt and Virasoro algebras associated to $q$-difference operators, providing also corresponding q-deformed Jacobi identities.
We propose a new method to compute connection matrices of quantum Knizhnik-Zamolodchikov equations associated to integrable vertex models with super algebra and Hecke algebra symmetries. The scheme relies on decomposing the underlying spin representa tion of the affine Hecke algebra in principal series modules and invoking the known solution of the connection problem for quantum affine Knizhnik-Zamolodchikov equations associated to principal series modules. We apply the method to the spin representation underlying the $mathcal{U}_qbigl(hat{mathfrak{gl}}(2|1)bigr)$ Perk-Schultz model. We show that the corresponding connection matrices are described by an elliptic solution of a supersymmetric version of the dynamical quantum Yang-Baxter equation with spectral parameter.
107 - Tao Zhang 2021
We introduce the conception of matched pairs of $(H, beta)$-Lie algebras, construct an $(H, beta)$-Lie algebra through them. We prove that the cocycle twist of a matched pair of $(H, beta)$-Lie algebras can also be matched.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا