ﻻ يوجد ملخص باللغة العربية
Let $fcolonmathbb{R}^2tomathbb{R}$. The notions of feebly continuity and very feebly continuity of $f$ at a point $langle x,yrangleinmathbb{R}^2$ were considered by I. Leader in 2009. We study properties of the sets $FC(f)$ (respectively, $VFC(f)supset FC(f)$) of points at which $f$ is feebly continuous (very feebly continuous). We prove that $VFC(f)$ is densely nonmeager, and, if $f$ has the Baire property (is measurable), then $FC(f)$ is residual (has full outer Lebesgue measure). We describe several examples of functions $f$ for which $FC(f) eq VFC(f)$. Then we consider the notion of two-feebly continuity which is strictly weaker than very feebly continuity. We prove that the set of points where (an arbitrary) $f$ is two-feebly continuous forms a residual set of full outer measure. Finally, we study the existence of large algebraic structures inside or outside various sets of feebly continuous functions.
We introduce and study (metrically) quarter-stratifiable spaces and then apply them to generalize Rudin and Kuratowski-Montgomery theorems about the Baire and Borel complexity of separately continuous functions.
We obtain several game characterizations of Baire 1 functions between Polish spaces X, Y which extends the recent result of V. Kiss. Then we propose similar characterizations for equi-Bare 1 families of functions. Also, using similar ideas, we give g
The linear continuity of a function defined on a vector space means that its restriction on every affine line is continuous. For functions defined on $mathbb R^m$ this notion is near to the separate continuity for which it is required only the contin
Let $Sigma (X,mathbb{C})$ denote the collection of all the rings between $C^*(X,mathbb{C})$ and $C(X,mathbb{C})$. We show that there is a natural correlation between the absolutely convex ideals/ prime ideals/maximal ideals/$z$-ideals/$z^circ$-ideals
A function $f:Xto Y$ between topological spaces is called $sigma$-$continuous$ (resp. $barsigma$-$continuous$) if there exists a (closed) cover ${X_n}_{ninomega}$ of $X$ such that for every $ninomega$ the restriction $f{restriction}X_n$ is continuous